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Introduction

A sentence of Daniel Huybrechts states that ”Algebraic geometry starts
with cubic polynomial equations. Everything of smaller degree, like linear
maps or quadratic forms, belongs to the realm of linear algebra” ([Huy2]).
Then it is not surprising that the algebraic geometers dedicated a huge
amount of work to the study of cubic hypersurfaces.

The 1-dimensional case is that of elliptic curves, which have been stud-
ied intensively since 19-th century. This is true in particular for their group
law and their moduli spaces, which brought to the development of the the-
ory of modular forms and modular curves, with many applications both
in Geometry and Arithmetic.

Smooth cubic surfaces are all rational and birational to a projective
plane blown up at 6 points in a sufficiently general position. It is known
that all of them contain 27 lines. The moduli space is a rational variety of
dimension 4. The configuration of 27 lines gives rise to 36 pair of contrac-
tions of the same smooth cubic surface to a projective plane. Each of these
pair is known as a double-six of lines of the cubic. The moduli space of
these doubles-six configurations is still a rational variety, it is actually an
open set of the weighted projective space P(1, 2, 3, 4, 5). A good reference
for these results is [Dol2].

Smooth cubic threefolds are all unirational but not rational as well, as
proved by Clemens and Griffiths in [CS]. This is a case of a variety which
is reconstructed from its Hodge structure, that is a Torelli theorem holds
for cubic threefolds. An equivalent property is that two cubic threefolds
are isomorphic if and only if their intermediate Jacobians are. These are
special principally polarized abelian varieties of dimension 5.

The cubic fourfolds are the subject of this thesis. As well as for cubic
threefolds, the Hodge structure is not trivial and there exists a Torelli The-
orem for cubic fourfolds, see [Vo]. The property of this case is that the
Hodge structure is quite similar to that of a K3 surface. A reason explain-
ing this fact is that, as shown by Beauville and Donagi in [BD], the Fano
variety of lines of a cubic fourfold is a hyperkähler fourfold, deformation
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equivalent to the Hilbert scheme of subschemes of length 2 of a K3 surface.

The chapters from 1 to 4 are summaries of known results: in particular
chapter 1 is a review of the theory of K3 surfaces, chapter 2 describes the
various constructions of the moduli space of cubic fourfolds, chapter 3
recalls the notion of Hassett divisors and associated K3 surfaces, chapter 4
describes more in detail what is known about Pfaffian cubic fourfolds.

Chapter 5 contains our new results on the moduli of nodal and Pfaf-
fian cubic fourfolds, namely a first geometric description of the intersec-
tion of the Hassett divisors C6 and C14. We show that this space contains
two irreducible components characterized as follows. One component
parametrizes the birational classes of nodal cubic fourfolds containing a
cone over a quartic rational normal curve. The second one parametrizes
birational classes of nodal cubic fourfolds containing a cone over a quin-
tic elliptic curve. The corresponding associated K3 surfaces are described
and the rationality of the first component is proved.

Chapter 6 contains the proof of the rationality of the universal K3 sur-
face of genus 8 . The main idea is to use the Hassett correspondence in
order to prove that the universal K3 surface of genus 8 is birational to a
suitable GIT quotient of the linear system of cubic fourfolds containing a
fixed rational normal scroll. We show that this quotient is naturally a pro-
jective bundle over a GIT quotient of the linear system of (3, 2)-divisors in
P1 ×P1.

Acknowledgements. First, I want to thank my advisor, Prof. Sandro
Verra, for suggesting the problem and for his continuous guidance and
his careful review. I thank also all my collegues of the PhD, especially Fab-
rizio Anella, Raffaele Carbone and Manoj Gyawali for their help and their
useful suggestions. A special thank also to Ankan Pal (former PhD from
University of L’Aquila) for helping me in some computational aspects by
doing some experiments in MAGMA. Last, but not least, I want to thank
two persons who have great responsability for the fact that I am being
here: Prof. Stefano Viaggiu for convincing me to change faculty, passing
to mathematical studies, nine years ago and Prof. Flaminio Flamini for
making me like this subject, for helping me before starting the PhD and
for suggesting Roma Tre as the best option.



Chapter 1

K3 surfaces and their moduli

1.1 Basic definitions and properties

1.1.1 Complex K3 surfaces

Definition 1.1.1. A complex K3 surface is a compact connected manifold
X of dimension 2 such that

Ω2
X
∼= OX and h0(Ω1

X) = 0.

Remark 1.1.2. In other words the canonical sheaf of the complex manifold
X is trivial and its irregularity q(X) = h0(Ω1

X) is zero. Then the Hodge de-
composition implies that the first Betti number b1(X) is zero. Since b1(X)
is even a well known theorem of Siu implies that X is a Kähler variety.

Let Dr ⊂ Da ⊂ Dn ⊂ DivX respectively be the subgroups of divisors
which are linearly , algebraically, numerically equivalent to zero. Then we
have natural surjective homomorphisms

Pic(X)� NS(X)� Num(X).

Indeed we just have by definition:

Pic(X) ∼= Div(X)/Dr , NS(X) ∼= Div(X)/Da , Num(X) ∼= Div(X)/Dn.

In what follows we mention, or sometimes revisit with ad hoc arguments,
some further basic properties of a K3 surface.

Lemma 1.1.3. Let X be a complex manifold then H1(X, Z) has no torsion.

6



CHAPTER 1. K3 SURFACES AND THEIR MODULI 7

Proof. This indeed follows from the exponential exact sequence

0→ Z→ OB
exp→ O∗B → 0.

Then, passing to its associated long exact sequence, we have

0→ Z→ C
exp→ C∗ → 0→ H1(X, Z)→ . . . .

Hence it follows that H1(X, Z) injects in H1(OX). Since the latter is a com-
plex vector space, H1(X, Z) has no torsion.

Proposition 1.1.4. Let X be a K3 surface then its Betti number are as follows:

b0(X) = b4(X) = 1 , b1(X) = b3(X) = 0 , b2(X) = 22.

Proof. Poincarè duality implies the former equalities. The latter one fol-
lows by Noether’s formula 12χ(OS) = c2

1(S)+ c2(S) for a smooth complex
surface S. For X = S we have c2

1(X) = 0. Hence the Euler characteristic
c2(X) of X is 24, since pg(X) = h0(OX) = 1. This implies b2(X) = 22.

Proposition 1.1.5. A K3 surface X is simply connected.

Proof. Let t ∈ π1(X) be a non zero element. Since b1(X) = 0 then t is a
torsion element. Hence it defines a non ramified covering πt : X̃ → X
of degree n, where X̃ is a complex surface with trivial canonical sheaf.
t acts on H0(Ω1

X̃) has an automorphism of order n. Assume the latter
space is non zero, then there exists a non zero invariant holomorphic 1-
form ω̃. Since this descends on X we have a contradiction. Hence we
necessarily have h0(Ω1

X̃) = 0 and, by definition, X̃ is a K3 surface. But
then c2(X̃) = nc2(X) = 24 and hence n = 1, that is t = 0 in π1(X).

Proposition 1.1.6. The integral cohomology ring of a K3 surface has no torsion.

Proof. By Poincarè duality and the universal coefficients theorem we have
H1(X, Z) ∼= H3(X, Z). Therefore it suffices to show that H1(X, Z) and
H2(X, Z) have no torsion. The vanishing of H1(X, Z) follows because this
is the abelianisation of the fundamental group of X, which is zero. To
prove that H2(X, Z) has no torsion consider as above the exponential se-
quence of X and its associated long exact sequence. We have in particular

0→ H1(X,O∗X)→ H2(X, Z)
f→ H2(X,OX)→ ...

Let t ∈ H2(X, Z) be a torsion element, then f (t) = 0, since it is a torsion
element in H2(X,OX) ∼= C. This implies that t ∈ H1(O∗X) ∼= Pic X. But
then t defines a finite unramified covering πt : X̃ → X. Since X is simply
connected, πt is trivial and t = 0.
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Let X be a K3 surface. The previous properties immediately imply that

Pic(X) ∼= NS(X).

1.1.2 Structure of the cohomology

Using the previous properties and applying Poincaré duality, the Betti
number of a K3 surface are the following:

b0(X) = b4(X) = 1 , b2(X) = 22 , b1(X) = b3(X) = 0.

Moreover Poincaré duality implies that for a K3 surface X the map

λ : H2(X, Z)×H2(X, Z)→ H4(X, Z)

defined via cup product is a perfect pairing. Moreover the next property
is very well known as well, see [Huy1].

Proposition 1.1.7. λ defines a structure of even, unimodular lattice on H2(X, Z).

Applying the well known classification, of these lattices up to isome-
tries, it follows that

H2(X, Z) ∼= U⊕3 ⊕ E8(−1)⊕2.

where U is a hyperbolic plane and E8(−1) is the exceptional lattice E8
twisted by −1.

Definition 1.1.8. U⊕3 ⊕ E⊕2
8 is the K3 lattice.

Proposition 1.1.9. The signature of the corresponding quadratic form on H2(X, R)
is (3, 19) and it is (1, 19) on the subspace H1,1(X, R) = H1,1(X, C)∩H2(X, R).

1.1.3 Algebraic K3 surfaces

Definition 1.1.10. A complex K3 surface is said to be projective if there
exists an ample class in H1,1(X, Z).

For every smooth projective complex variety, algebraic and numerical
equivalence coincide up to torsion for divisors. In particular, since the
integral cohomology of a K3 surface X has no torsion, we have:

Proposition 1.1.11. Let X be a complex projective K3 surface then

Pic(X) ∼= NS(X) ∼= Num(X).
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Example 1.1.12. Some basic families of projective K3 surfaces are obtained
considering smooth complete intersections in a projective space.as fol-
lows. Applying Lefschetz theorem to a complete intersection X in Pn,
with n ≥ 3, it follows b1(X) = 0. Hence h0(Ω1

X) = 0. Finally the standard
application of adjunction formula implies that a smooth X is a surface with
trivial canonical class exactly in the following cases.

1. X is a quartic surface in P3;

2. X is complete intersection of a quadric and a cubic in P4;

3. X is a complete intersections of three quadrics in P5.

Example 1.1.13. In the same way let X ⊂ Pn ×Pm be a smooth complete
intersection of m + n− 2 divisors of bidegrees (ai, bi), i = 1 . . . m + n− 2.
Assuming aibi ≥ 2 one obtains with the same arguments the following list.

1. X is a surface of bidegree (3, 2) in P2 ×P1;

2. X is a surface of bidegree (2, 1), (2, 1) in P3 ×P1;

3. X is a complete intersection of type (2, 1), (1, 2) in P2 ×P2.

Assume X is a smooth complete intersection in a 3-dimensional product
of projective spaces, then the only case not considered above is:

X is a divisor of type (2, 2, 2) in P1 ×P1 ×P1;

Finally let X be a smooth quadratic section in Pg of a cone V of vertex a
point over a rational normal scroll S of degree g− 1 in Pg−2, see [GH] for
the definition. Then the projection map of center the vertex v of this cone
defines a double covering

πv : X → S.

Applying once more the same arguments to the standard desingulariza-
tion V × P1 and the strict transform of X on it, it follows that X is a K3
surface of degree 2g− 2 embedded in Pg. This example is important be-
cause of the follwing theorem.

Theorem 1.1.14. [[Huy1, ch.5 prop. 3.1]] Consider the Hilbert scheme HilbX of
X in Pg. Then, at the parameter point x of X, one has:

1. HilbX is smooth and irreducible at x of dimension 19 + dim Aut Pg,

2. for a general Y in the same component Pic(Y) is generated by OY(1).

The theorem puts in evidence a well known property of projective K3
surfaces. For each g ≥ 3 one has a family as above of degree 2g − 2 K3
surfaces. This is further reconsidered in the next section.
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1.2 Families of algebraic K3 surfaces

1.2.1 Polarized K3 surfaces

Definition 1.2.1. A polarized K3 surface is a pair (X, L) such that X is a K3
surface and L is an ample line bundle on X.

This is equivalent to say that X is endowed with an embedding in a
projective space, provided by a suitable positive power L⊗m of L. Let X be
embedded in PN, obviously OX(1) is ample, with m = 1, and (X,OX(1))
is an example of polarized K3 surface. Recall that for K3 surfaces a stronger
version of Fujita conjecture holds:

Theorem 1.2.2 ([Huy1, ch.2 thm 2.7]). Let L be an ample line bundle on a K3
surface, then L⊗k is globally generated for k ≥ 2, very ample for k ≥ 3.

A similar result holds also for big and nef line bundles on K3 surfaces.

Theorem 1.2.3 ([Huy1, che.2 them 3.4]). Let L be a big and nef line bundle,
then L⊗k is globally generated for k ≥ 2.

In what follows it will be natural to use pairs (X, L) such that L is big
and nef. Following some use we adopt therefore the following definition.

Definition 1.2.4. A pseudo-polarized K3 surface is a pair (X, L) such that X is
a K3 surface and L is a big and nef line bundle on X.

Recall that a line bundle L ∈ PicX is called indivisible or primitive if the
quotient of Pic(X) by the group generated by it has no torsion.

Actually, in many cases to be considered, we will deal with an indivis-
ible, big and nef line bundle L such that L itself is globally generated. The
next proposition states conditions for which a line bundle on a K3 surface
is globally generated or very ample.

Proposition 1.2.5. Let L be a big and nef line bundle on a K3 surface. If L · L ≥ 4
and L · E ≥ 2 for all curves E, then L is globally generated. Furthermore if L is
ample, L · L ≥ 4 and L · E ≥ 3 for all curves E, then L is very ample.

Definition 1.2.6. A primitively (pseudo) polarized K3 surface is a pair (X, L),
where X is a K3 surface, L an indivisible , (big and nef), ample line bundle.

The value 2d = (L)2 is called degree of the polarization. Since the arith-
metic genus of any curve in |L| is d + 1 we will say, as usual, that (X, L)
has genus d + 1 or that X is polarized in genus g = d + 1.
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1.2.2 Projective models of K3 surfaces

We have seen that, under the assumptions ofthe latter proposition, a K3
surface (pseudo)-polarized by L the associated rational map φL : X → Pg

is birational onto its image φL(X). This is a surface of degree 2g− 2, where
g is the geometric genus of the general element of |L|. A natural question
is the existence of such a K3 for any genus g ≥ 3 and their properties.
We have seen a concrete, well known, answer in the example 1.1.12. The
example considered proves the existence. However it is a special case,
where Pic(X) has rank two, of the following more general theory.

Theorem 1.2.7 ([Huy1, 4.2]). For g ≥ 3 there exists a K3 surface of degree
2g− 2 in Pg primitively embedded and of Picard number one.

A natural task is to know the equations defining a projective model
φL(X) of a polarized K3 surface. For g ≥ 5 the general K3 of genus g,
embedded in Pg, is defined by quadratic equations.

Theorem 1.2.8 ([Sai, 7.2]). Let S be a K3 surface and L be a polarization of
degree at least 8, such that the general element of |L| is non-hyperelliptic. Then
ϕL(S) is generated by homogeneous polynomials of degree 2 and 3. Furthermore
it is generated by homogeneous polynomials of degree 2 except in these cases:

• There exists an irreducible curve E ⊂ S such that pa(E) = 1 and E · L = 3;

• L ∼= OS(2B + Γ), where B ⊂ S is an irreducible curve of genus 2, Γ is a
rational curve such that Γ · B = 1.

The same results have been extended to pseudo-polarized K3 surfaces.
The map φL is a birational morphism onto its image under the same as-
sumptions. Then the image φL(X) has finitely many rational double points
as its only singularities.

1.2.3 Mukai constructions

In [Mu1] Mukai gave explicit descriptions of general K3 surfaces of genus
6 ≤ g ≤ 10 and Picard number one in Pg. Differently from the case of
genus g ≤ 5, for g ≥ 6 these K3 surfaces are not complete intersections
of g − 2 hypersurfaces of Pg. Mukai proved that, for those values of g,
the general K3 surface is complete intersection in a certain homogeneous
space X. Actually the latter is the quotient of a simply connected Lie group
G by a maximal parabolic subgroup P. X is embedded in a projective
space through the linear system |OX(1)|, where OX(1) denotes the ample
generator of the Picard group of X, whose rank is one. The group G is the
following, depending on g:
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1. g = 6, G = SL(5), dim(X) = 6, h0(OX(1)) = 10;

2. g = 7, G = Spin(10)dim(X) = 10, h0(OX(1)) = 16;

3. g = 8, G = SL(6), dim(X) = 8, h0(OX(1)) = 15;

4. g = 9, G = Sp(3), dim(X) = 6, h0(OX(1)) = 14;

5. g = 10, G = exceptional of type G2, dim(X) = 5, h0(OX(1)) = 14.

In the case g = 6 the general K3 surface is the intersection of X = G(2, 5)
with 3 hyperplanes and one quadric hypersurface. For 7 ≤ g ≤ 10, the
general K3 surface of genus g is intersection of X with dim(X)− 2 hyper-
planes. In particular for g = 8, the general K3 is intersection of G(2, 6)
with 6 hyperplanes. This property is also known as Mukai linear section
theorem.

1.3 Moduli spaces of K3 surfaces

The period domain is a fundamental tool to classify Hodge structures of
complex K3 surfaces modulo isometries. The Torelli theorem, as given by
Piateski-Shapiro and Shafarevich, ensures that this classification is equiv-
alent to parametrize biholomorphic classes of complex K3 surfaces.

1.3.1 The period map

Denote by Λ the K3 lattice and by q its quadratic form. No lattice iso-
morphism H2(X, Z) ∼= Λ is canonically defined a priori, even modulo the
group of isometries of Λ.

Definition 1.3.1. A marked K3 surface is a pair (X, φ), where X is a com-
plex K3 surface and

φ : H2(X, Z)→ Λ

is a lattice isomorphism called marking. A morphism of marked K3 sur-
faces

f : (X, φ)→ (X′, φ′)

is a morphism f : X → X′ such that φ ◦ f ∗ = φ′.

Given a marked K3 surface (X, φ), we consider the one-dimensional
subspace φ(H2,0(X)) ⊂ Λ ⊗ C. This defines a point in P(Λ ⊗ C). For
σ ∈ H0(X, Ω2

X) \ {0} we have that σ2 = 0 and, by Hodge-Riemann bi-
linear relations, that σ ∧ σ̄ > 0 (see for example [GH, ch.0 sec. 7]). This
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means that the image of σ is contained in an open subset of a quadric hy-
persurface defined by q, where q denotes the quadratic form associated to
the bilinear form on Λ.

Definition 1.3.2. The period domain is defined as follows:

D := {x ∈ P(Λ⊗C)|q(x, x) = 0, q(x, x̄) > 0}.

The set of isomorphism classes of marked K3 surfaces is denoted by N .
The period map is defined as

N D
(X, φ) φ(H2,0(X)).

P

The image of (X, φ) is called the period of (X, φ).

We want to give a topological and complex structure to N . In order to
do this, we study the behaviour of the periods under deformations. Let
(X, φ) be a marked K3 surface and

π : X → B

the universal deformation of X. Since X is a regular surface we have, by
Serre duality, H2(X, TX) = H0(X, Ω1

X) = 0. This implies that the open
neighborhood B is smooth and we can assume that it is a polydisk, see
[KNS] for a reference. The dimension of the basis is dim(H1(X, TX)) =
h1,1(X) = 20. The sheaf R2π∗Z is trivial and it has fibre H2(X, Z).

This allows to identify canonically H2(Xt, Z) to H2(X, Z) for all t ∈ B.
In this way R2π∗OX/B ↪→ Λ ⊗Z OB is a sub-bundle of rank one (since
h2,0(X) = 1). Thus we have a morphism from B to P(Λ⊗C). From what
we discussed above, the image of this morphism is contained in D. So
there is a well defined map

φ : B→ D.

On the other side, since X is a family of marked surfaces, we also have a
map

f : B→ N
which satisfies the condition φ = P ◦ f .
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1.3.2 Torelli theorem and surjectivity

Theorem 1.3.3 (Local Torelli Theorem). The differential of the local period map

dφtTtB→ Tφ(t)D

is an isomorphism. So φ is a local isomorphism.

In particular, if we shrink B enough, the map f is injective. As a conse-
quence we finally choose as a basis, for the topology we want to define on
N , the collections of all such maps f . This defines complex structure on
N : the transition functions must be holomorphic since they are induced
by the maps between the bases of universal deformations.

Definition 1.3.4. The complex manifold N is called the moduli space of marked
K3 surfaces.

N is not an irreducible manifold: it can be proved that it has two con-
nected components.

Theorem 1.3.5. (Surjectivity of the global period map). Let N ◦ be a connected
component of N . Then the restriction of the period map

P : N ◦ → D

is surjective.

N does not behave well topologically, since it is not Hausdorff.

Definition 1.3.6. Two points x, y ∈ N are called equivalent if for any two open
neighborhoods U 3 x, V 3 y we have U ∩V 6= ∅. In this case we write x ∼ y.

Definition 1.3.7. The quotient space N̄ := N/ ∼ is a Hausdorff space called
the Hausdorff reduction of N . We denote by ρ : N → N̄ the quotient map and
by P̄ the map defined by the condition P = P̄ ◦ ρ.

Proposition 1.3.8. N̄ is a Hausdorf complex manifold and P̄ is a topological
covering. The same is true for the restriction to any connected component.

It can be proved that D is simply connected. From this it follows the
statement below.

Proposition 1.3.9. Let N̄ ◦ a connected component of N̄ . Then P̄ : N̄ ◦ → D is
an isomorphism.

Theorem 1.3.10 (Classical form of Global Torelli). Two K3 surfaces X and X′

are isomorphic if and only if the Hodge structures H2(X, Z) and H2(X′, Z) are
isomorphic.
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1.3.3 Lattice polarized K3 surfaces

Lattice-polarized K3 surfaces are K3 surfaces whose Picard group contains
a primitive embedding of a fixed abstract lattice, necessarily even.

Definition 1.3.11.
Let M be any abstract lattice of signature (1, r − 1). An M-polarized K3

surface is a pair (S, φ), where S is a K3 surface and φ : M → Pic(S) is a fixed
primitive embedding of lattices.

Two M-polarized lattice polarized K3 surfaces (S, φ) and (S′, φ′) are isomor-
phic if there exist an isomorphism of algebraic surfaces f : S→ S′ such that

f ∗φ′ = φ.

Let N = M⊥ be the orthogonal lattice in the K3 lattice. Denote by
NC := N ⊗C and set

DM = {Cv ∈ P(NC) : v2 = 0, v · v̄ > 0}.

Let ΓM the sub-lattice of the K3 lattice corresponding to isometries acting
trivially on M. Then ΓM acts on DM. It is possible, using an analogous
deformation argument, to define a period map

pπ : T → ΓM\DM,

where π : X → T is a family of M-polarized K3 surfaces.

Theorem 1.3.12 (Torelli theorem for lattice polarized K3 surfaces). Let (S, φ)
and (S′, π′) be two M-polarized K3 surfaces and p the period map. Then

(S, φ) ∼= (S′, φ′)⇐⇒ p(S, φ) = p(S′, φ′).

If follows that ΓM\DM is a coarse moduli space of lattice-polarized K3
surfaces.

1.4 Moduli of K3 surfaces of genus g

1.4.1 The construction

The construction of the moduli space of primitively polarized K3 surfaces
can be done in a similar way. For any genus g one can consider the set
Ng of triples (X, L, ϕ), where S is a K3 surface, L a big and nef line bundle
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of degree 2g− 2 and ϕ : H2(X, Z)→ Λ a fixed isomorphism with the K3
lattice, which maps L to the distinguished class hg = e1 + d f1.

Let Λg = h⊥g and Õ(Λg) be the set of automorphisms of Λ fixing hg.
Then Õ(Λg) acts on Ng and Õ(Λg)\Ng parametrizes couples (S, L).

In a very similar way one can define the period map

Pg : Ng → Dg, P g : Õ(Λg)\Ng → Õ(Λg)\Dg

Theorem 1.4.1. The maps Pg and P̄g are open embeddings.

Differently from the non-polarized case, the right side of P̄d is a quasi-
projective variety. It turns out that it is isomorphic to the space of primi-
tively quasi polarized K3 surfaces:

Fg ∼= Õ(Λg)\Dg.

1.4.2 Noether-Lefschetz divisors

The general primitively quasi polarized K3 surface, with a fixed genus g,
has Picard lattice of rank 1, generated by the hyperplane section. The con-
dition of having Picard lattice of rank at least 2 is divisorial in Fg. For each
M primitive sublattice of Λ containing hg, there is an associated subset of
D:

SM := {z ∈ D : z ·m = 0, for any m ∈ M}.
Denote by Lg,d,b := {M = hgZ⊕ βZ : hg · β = d, β2 = 2b}.

Theorem 1.4.2. The set

NLg,d,b := Γg\
⋃

M∈Lg,d,b

SM

is an irreducible divisor of Γg\Dg, called Noether-Lefschetz divisor.

In other terms, any curve in a very general K3 surface of degree 2g− 2
in Pg is cut by a hypersurface. The ones having Picard lattice of rank ≥ 2
are union of countably many irreducible divisors.

1.4.3 GIT description for the initial values of g

For the initial values of g there exist alternative characterizations of Fg
as GIT quotients. For the values g = 3, 4, 5 the K3 surfaces are complete
intersections, so they are easily described as GIT quotients.
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1. F3
∼= P(H0(OP3(4)))// PGL(4);

2. F4
∼= H2,3

P4 // PGL(5), whereH2,3
P4 denotes the Hilbert scheme of com-

plete intersections of a quadric and a cubic hypersurface in P4;

3. F5
∼= H2,2,2

P5 // PGL(6), where H2,2,2
P5 denotes the Hilbert scheme of

complete intersections of three quadric hypersurfaces in P5.

Mukai in [Mu1] described the K3 of genus 7 ≤ g ≤ 10 as quotients of
rational homogeneous spaces.

Theorem 1.4.3 ([Mu1, 0.3]). For each g = 6, 7, 8, 9, 10, denote by G and X
following the notation of section 1.2.3 and Ḡ = G/Z(G). Then

Fg ∼= G(n− 2, H0(OX(1)))/Ḡ.

1.4.4 Birational geometry of Fg

A topic which received a wide attention is the birational classification of
Fg. The unirationality is clear for g = 3, 4, 5 since Fg is described as mod-
uli of certain complete intersections. An immediate consequence of 1.4.3
is the following.

Theorem 1.4.4 ([Mu1, 0.5]). Fg is unirational for every 6 ≤ g ≤ 10.

Mukai also proved the unirationality of Fg for other particular values
of g.

Theorem 1.4.5 (Mukai). The following moduli spaces of K3 surfaces are unira-
tional:

• F13 ([Mu4, 1.1]);

• F18 ([Mu3, 0.3]);

• F20 ([Mu3, 0.5]).

Gritsenko, Hulek and Sankaran proved in [GHS, 1] proved that Fd is
of general type for big values of g.

Theorem 1.4.6. [GHS, 1] The moduli space F2d of K3 surfaces with a polarisa-
tion of genus g is of general type for any g > 62 and for g = 47, 51, 55, 58, 59
and 61.

If g ≥ 41 and g 6= 42, 45, 46 or 48 then the Kodaira dimension of Fg is
non-negative.
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1.4.5 The universal pointed K3 surface Fg,n: what is known?

Since the automorphism group of the generic K3 surface is trivial, the Uni-
versal Hilbert scheme of dimension 0 and length n and the universal n-
pointed K3 surface are well defined.

Definition 1.4.7. F [n]
g is the moduli space of triples (S, L, Y), where S is a

K3 surface, L is primitive big and nef line bundle, Y ⊂ S is a 0-dimensional
subscheme of length n.
Fg,n is the moduli space of triples (S, L, Y), where S is a K3 surface, L

is primitive big and nef line bundle, Y ⊂ S is an ordered set of n points of
S.

The rationality results for Fg obtained by Mukai can be extended to

F [n]
g and Fg,n as pointed out by Farkas and Verra in [FV1].

Theorem 1.4.8 ([FV1, 5.1]).

(i) Fg,g+1 is unirational for g ≤ 10.

(ii) F11,1 is unirational. The Kodaira dimension of F11,11 and F [11]
11 equals 19.

Also the universal K3 of genus 13 is unirational, since Mukai proved
in [Mu3] that it is dominated by a rational homogeneous space. Notice
by the way that Fg,1 cannot be of general type. The answer is negative, as
remarked in [FV1, 5.4], becauseFg,1 → Fg is fibred in Calabi-Yau varieties,
that is the K3 surfaces of the universal family. Then, the so called Iitaka’s
easy addition formula implies that κ(Fg,1) ≤ dim(Fg) = 19.

An interesting question is to know for what values of g and n Fg,n and

F [n]
g are near to being rational. By this we mean that the variety considered

is at least uniruled, with possibly additional properties culminating in the
property of being rational. For instance Farkas and Verra proved that the
universal K3 surface of degree 14 is rational by using the connection be-
tween K3 surfaces and cubic fourfolds.

Theorem 1.4.9. [FV1, 1,2,1.3] The universal K3 surface F14,1 is birational to a
P12-bundle over the moduli space hscr of 3-nodal septic scrolls of P5.
Furthermore hscr is birational to P3 ×P3 ×P3//S3 and is thus rational.

The author of this manuscript proved in [DiT] that F8,1 is a rational variety
as well. The proof is part of the work of this thesis and the details are in chapter 6.



Chapter 2

Cubic fourfolds and their moduli

2.1 Basic definitions and properties

2.1.1 Cubic fourfolds and GIT-stability

The moduli space of cubic fourfolds parametrizes cubic hypersurfaces of
P5 up to projective automorphisms. So it is a GIT quotient

P(H0(OP5(3)))// PGL(6).

The dimension of this space is dim(P(H0(OP5(3))))−dim(PGL(6)) = 20.
As is well known from Geometric Invariant Theory, in order to have a so
called good quotient, one needs to determine the semistable locus cubic
hypersurfaces under the action of PGL(6). Radu Laza in [Laz1] exhaus-
tively answered this question in the case of cubic fourfolds.

Theorem 2.1.1 ([Laz1, 1.1]). A cubic fourfold X is not stable if and only if the
following conditions holds:

(i) X is singular along a curve C spanning a linear subspace of dimension at
most 3 of P5;

(ii) X contains a singularity that deforms to a singularity of class Ẽr (for r =
6, 7, 8).

In particular a cubic fourfold containing only isolated simple singularities (of type
An for n ≥ 1, Dn for n ≥ 4, En for n = 6, 7, 8) are stable.

The above theorem implies that it makes sense to discuss about the
space of cubic fourfolds with at most simple isolated singularities, which
will be denoted by C. Laza described the stability conditions also for cubic
fourfolds having a higher dimensional singular locus.

19
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Proposition 2.1.2. [Laz1, 6.5] Let X be a cubic fourfold with dim(Sing(X)) ≥
2. Then one of the following holds:

(i) the singular locus contains a plane or a quadric surface;

(ii) the singular locus S is a cone over a rational normal quartic curve, in which
case X is the secant variety of this cone;

(iii) the singular locus S is a Veronese surface in P5, in which case X is its
secant variety.

Furthermore X is semistable only in case (iii).

The other main result of Laza was the construction of a compactifica-
tion of C.

Theorem 2.1.3 ([Laz1, 1.2]). The moduli space C of cubic fourfolds having at
worst simple singularities is compactified by the GIT quotient C by adding six
irreducible boundary components γ1, ..., γ6. A semistable cubic fourfold X with
minimal orbit corresponding to a generic point in a boundary component has one
of the following geometric properties:

γ1 : X is singular along a line and a quartic elliptic curve;

γ2 : X has two Ẽ8 singularities of the same modulus;

γ3 : X is singular along a conic and has an isolated Ẽ7 singularity;

γ4 : X has three Ẽ6 singularities.

γ5 : X is singular along a rational normal curve of degree 4; X is stable;

γ6 : X is singular along a sextic elliptic curve; X is stable.

Furthermore, the boundary components γ2 and γ5 are 3-dimensional and they
meet along a surface σ. Moreover σ meets the 2-dimensional boundary compo-
nents γ3 and γ6 along a curve τ. τ meets the 1-dimensional components γ1 and
γ4 in a single point ζ.

2.1.2 Structure of the cohomology

The structure of the lattice H4(X, Z) of a cubic fourfold plays a central role
in the theory that will follow.

Convention In what follows we often adopt the notation

L
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for a fixed abstract lattice isometric to H4(X, Z).
We will always denote by h the hyperplane class in H2(X, Z). There-

fore h2 is the cohomology class of a 2-dimensional linear section of X and

(h2)2 = 3.

Definition 2.1.4. We say that L is the cubic fourfold lattice.

The canonical bundle of a smooth cubic fourfold X ⊂ P5 is OX(−3).
The non zero Betti numbers, are the following:

b0(X) = b2(X) = b6(X) = b8(X) = 1, b4(X) = 23

and the Hodge diamond is

1
0 0

0 1 0
0 0 0 0

0 1 21 1 0.

The lattice structure of the middle cohomology of a cubic fourfold X is

H4(X, Z) ∼= (+1)⊕21 ⊕ (−1)⊕2 := L.

The Hodge-Riemann bilinear relations imply that H4(X, R) has signature
(21, 2). The lattice is unimodular by Poincaré duality and (h2)2 = 3. This
characterizes L in the classfication of unimodular lattices.

The primitive cohomology is the orthogonal lattice in H4(X, Z) of the
squared hyperplane class:

H4(X, Z)prim = (h2)⊥.

Differently from the full cohomology, the primitive middle cohomology is
an even unimodular lattice of signature (20, 2). One has

H4(X, Z)prim
∼= A2 ⊕U⊕2 ⊕ E⊕2

8 .

For what it follows it is now useful to introduce the Fano variety of lines
of X and its cohomology.
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2.2 The Fano variety of lines F(X)

2.2.1 Basic definitions and properties

Given a projective hypersurface X ⊂ Pn of degree d, its Fano scheme of
m-planes contained in X is set theoretically defined as

F(X, m) = {` ∈ G(m, n) : ` ⊂ X}.

As a scheme F(X, m) is appropriately defined as the fibre, at the element
X ∈ |OPn(d)|, of the natural projection morphism

υ : I→ |OPn(d)|.

where I is the incidence correspondence

I := {(X, L) ∈ |OPn(d)| ×G(m, n)| L ⊂ X}.

At least if the hypersurface X is smooth, it turns out that F(X, m) is the
Hilbert scheme of L in X. Very good references on the Fano scheme of
projective hypersurfaces are [BV] and [AK].

In the case of cubic hypersurfaces, the lecture notes of Huybrechts
([Huy2]) are reccomended since they represent an exhaustive and strongly
simplified updating of the entire theory.

A natural task is understanding the geometric properties of F(X, m).

Theorem 2.2.1 ([Huy2, 1.5]). If for an arbitrary hypersurface X ⊂ Pn of degree
d the Fano variety F(X, m) is not empty, then

dim(F(X, m)) ≥ n(m + 1)−
(

m + d
d

)
.

Moreover the equality holds for generic X ∈ |OPn(d)| unless F(X, m) is empty.

The case of our interest is d = 3 and m = 1. In this case one has

dim(F(X, 1)) ≥ 2n− 6.

Another relevant case is d = 3, m = 2: in this situation we have

dim(F(X, 2)) ≥ 3n− 16.

In particular the right side is non-negative only for n ≥ 6. This implies
that the general cubic fourfold does not contain planes.
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Convention In the case of lines, that is m = 1, we denote the Fano
scheme of X just by F(X). With some abuse we will also say that F(X) is
the Fano variety (of lines) of X.

This name originates from the investigations, due to the algebraic ge-
ometer Gino Fano (1871-1952), on F(X) when X is a cubic hypersurface in
P4. The variety F(X) is a smooth surface for each smooth cubic X ⊂ P4.

The smoothness of an algebraic variety is equivalent to the property
that its tangent sheaf is locally free. This remark is somehow of relevant
interest when studying Hilbert schemes, where the structure of the tangent
bundle to the Hilbert scheme HW , of a given (smooth) subscheme W of a
smooth variety V, is explicitely related to the normal bundle of W in V.

A fundamental property of Grothendieck’s theory of the Hilbert scheme
implies that, for a point of it corresponding to a (smooth) subscheme W ⊂
V the space of global sections of the normal bundle NW|V is the Zariski
tangent space to the Hilbert scheme itself. In our situation this implies the
next proposition, see [Huy2, Ch.3, 1.9].

Proposition 2.2.2. Let L ⊂ X be an m-plane contained in a variety X ⊂ Pn

which is smooth along L. Then the tangent space TLF(X, m) of F(X, m) is natu-
rally isomorphic to H0(L,NL/X).

If X is a cubic hypersurface and L is a line in X − Sing(X), there is a
precise characterization ofNL/X. At first we recall that, as a vector bundle
on P1, NL/X splits as follows, by a well known theorem of Grothendieck.

NL/X
∼= OL(a1)⊕ ...⊕OL(an−2)

Lemma 2.2.3 ([Huy2, Ch.3, 1.12]). Let L and X be as above, then

NL/X
∼= OL(a1)⊕ ...⊕OL(an−2),

with
(a1, ..., an−2) ∈ {(1, ..., 1, 0, 0), (1, ..., 1,−1)}.

Corollary 2.2.4 ([Huy2, Ch.3, 1.15]). If L ⊂ X is a line in a smooth cubic
hypersurface, then

TX|L ∼= OL(2)⊕NL/X.

Note that in both the cases the restricted tangent bundle has dimension
2n− 6, so its stalks have that dimension.

For any projective variety, we define its universal line as:

L := {(`, x) ∈ F(X)× X : x ∈ `}.
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Proposition 2.2.5. [Huy2, Ch.3, 1.16] Let X be a smooth cubic hypersurface,
NL/F(X) the normal bundle of the inclusion L ⊂ F(X)× X and p : L→ F(X)
the first projection. Then

TF(X)
∼= p∗NL/F(X)×X.

For smooth cubic hypersurfaces of dimension ≥ 2 there always exists
lines contained in it .

Proposition 2.2.6. [Huy2, 1.17] Let X ⊂ Pn a smooth cubic hypersurface,
n ≥ 3. Then F(X) is a smooth projective variety of dimension 2n− 6.

2.2.2 The hyperkähler structure

A hyperkähler manifold is a compact simply connected manifold whose
space of global holomorphic 2-forms is spanned by a everywhere non-
degenerate sympletic form.

Remark 2.2.7. In particular a hyperkähler manifold is symplectic, then it
is even dimensional.

Example 2.2.8. Complex K3 surfaces are hyperkähler manifolds.

Generalizing the example above, Beauville in [Bea] constructed a spe-
cial family of hyperkähler manifolds.

Proposition 2.2.9. [[Bea]] Let S be a smooth K3 surface, n > 1. Then:

(i) S[n] is a hyperkähler variety;

(ii) There exists an isomorphism of weight-two Hodge structures compatible
with the canonical integral forms

H2(Hilbn(S), Z) ∼= H2(S, Z)⊕Zδ,

where on the right hand side δ is a class of type (1, 1) and the integral form
is the direct sum of the intersection pairing on S and the integral form given
by δ2 = −2(n− 1). In particular b2(S[n]) = 23

The Fano variety of a cubic fourfold is a hyperkähler manifold of this
type.

Theorem 2.2.10. Let X be a cubic fourfold, Then F(X) is a hyperkähler variety.
Its Hodge diamond is.

1
0 0

1 21 1
0 0 0 0

1 21 23 21 1
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2.2.3 The Abel-Jacobi map

The Abel-Jacobi map connects the cohomology of a cubic fourfold X with
the cohomology of its Fano variety F(X).

Definition 2.2.11. Let X be a cubic fourfold and F be its Fano variety. Let

P := {(l, x) : x ∈ l} ⊂ F× X

be the incidence variety. Let π1 : P → F, π2 : P → X be the projections.
The Abel-Jacobi map is the homomorphism of cohomology groups

α := π1∗π
∗
2 : H4(X, Z)→ H2(F, Z).

Let h ∈ H2(X, Z) be the hyperplane class of X and g ∈ H2(F, Z) the
hyperplane class of F ⊂ G(2, 6) ⊂ P(

∧2 C6). Consider the family FS of
lines in X intersecting a codimension two linear section S = P3 · X. This
family is cut on F(X) by the Schubert divisor of G(2, 6) defined by P3.
Since this has class g and S has class h2, just the definition of α implies

α(h2) = g.

Definition 2.2.12. We denote by H4(X, Z)prim the subspace of H4(X, Z) given
by the condition x · h2 = 0 and by H2(F, Z)prim the subspace of H2(F, Z) given
by the condition x · g3 = 0.

Remark 2.2.13. H4(X, Z)prim is the primitive cohomology, in the frame of
Lefschetz theory. This motivates the notation.

A fundamental contribution to the understanding of the Fano variety
of lines F(X) of a smooth cubic fourfold is due to Beauville and Donagi.
In [BD, 6] they show the following theorem.

Theorem 2.2.14. For every X the Fano variety F(X) is a smooth deformation of
the Hilbert scheme of 2-points of a K3 surface.

More precisely they produce one example of smooth cubic fourfold
with this property, which implies the same for any X. The example is
reconsidered several times in the forthcoming part of this thesis, which is
indeed dedicated to some properties of such a family of fourfolds X and
to the family of their one-nodal limits.

Here let us say in advance that the K3 surface S, considered by Beauville
and Donagi, is a general smooth linear section of the Plücker embedding



CHAPTER 2. CUBIC FOURFOLDS AND THEIR MODULI 26

of the Grassmannian G(2, 6). Let L = OS(1), we are therefore dealing
with a polarized K3 surface (S, L) of degree d = 14 and genus g = 8. It is
also known, by the mentioned work of Mukai, that (S, L) defines a general
point of its moduli space F8. In particular Pic(S) is generated by L. Rely-
ing on the surface S and on the example of X they construct, Beauville and
Donagi prove several important properties of F(X) as follows.

Proposition 2.2.15. [BD, 6]

• The Abel-Jacobi map induces an isomorphism H4(X, Z)prim → H2(F, Z)prim.

• The quadratic form φ0 on H2(F, Z)prim defined by

φ0(u, v) :=
1
6

g2uv

is entire, even and of discriminant 3.

• For any x, y ∈ H4(X, Z)prim

φ0(α(x), α(y)) = −x · y.

Proof. We prove first the 3rd assertion. Let x ∈ H4(X, Z). Since π1 is a
P1-fibration, there exist x1 ∈ H2(F, Z), x2 ∈ H4(F, Z) such that:

π∗2 x = (π∗1 x1)π
∗
2 h− π∗1 x2. (2.1)

Applying π1∗ we get x1 = α(x). in particular there is g2 ∈ H2(F, Z) such
that:

π∗2 h2 = (π∗1 g)π∗2 h− π∗1 g2. (2.2)

Suppose now that x · h = 0. Multiplying 2.1 by π∗2 h and putting together
with 2.2 we get the relations

x2 = x1g, x1g2g2 = 0. (2.3)

Taking the square of 2.1, we find:

π∗2 x2 = −π∗1(gx2
1) · π∗2 h + π∗1(g2x2

1),

then multiplying by π∗1 g:

6x2 = −g2α(x)2, then the 3rd assertion follows.
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We prove 2nd assertion. It is sufficient to prove it in the particular case
when F ∼= S[2]: there is a canonical isomorphism

H2(F, Z) = H2(S, Z)⊕Zδ

where 2δ is the class of the exceptional divisor of S[2]. Denote by φ the
quadratic form on H2(F, Z) such that φ(s+nδ) = s2− 2n2, for s ∈ H2(s, Z)
and n ∈ Z; let l ∈ H2(s, Z) be the class of an hyperplane section. A stan-
dard calculation gives:

g = 2l − 5δ,

and, for y, v ∈ H2(F, Z),

g3u = 18φ(g, u),

g2uv = 6φ(u, v) + 2φ(g, u)φ(g, v).

So φ coincides with φ0 on H2(F, Z)prim. The second assertion follows. To
prove the 1st assertion we compute the expression of g2 in H4(F, Z):

gg2u = 15φ(g, u), for u ∈ H2(F, Z).

Considering 2.3, this implies that α(H4(X, Z)prim) ⊂ H2(F, Z)prim. Hence
α is an isometry of H4(X, Z) with (H2(F, Z)prim,−φ0). Since both of them
have discriminant 3, then α is an isomorphism.

2.3 Moduli of cubic fourfolds via periods

2.3.1 Period map and Torelli theorem

Relying on the previous description of the Hodge theory of X, we now
outline Claire Voisin’s proof of Torelli theorem for cubic fourfolds.

As usual C◦ will denote the moduli space of smooth cubic fourfolds.

For any smooth cubic fourfold X, there exists an isometry

φ : H4(X, Z)→ L

such that φ(h2) = η, where L denotes the abstract cubic fourfold lattice fixed
in the previous section. We recall that L is a unimodular odd lattice of
signature (21, 2) for which there exists η ∈ L such that (η, η) = 3 and for
which Lprim := η⊥ is an even lattice. Then,



CHAPTER 2. CUBIC FOURFOLDS AND THEIR MODULI 28

Definition 2.3.1. Let L and φ as above, φ is called a marking of X.

For any marking φ, we can identify H4(X, C)prim with
Lprim,C := Lprim ⊗Z C.

From Hodge theory H3,1(X) is a distinguished subspace of Lprim,C,
which means:

• H3,1(X) is isotropic: it is spanned by a form α such that (α, α) = 0;

• The hermitian form −(α, β̄) is positive on H3,1(X).

Consider the quadric hypersurface Q ⊂ P(Lprim,C) defined as

Q := {[α] ∈ P(Lprim,C) : (α, α) = 0}.

Let U be the open (in the euclidean topology) subset of Q defined as

U := {[α] ∈ Q : −(α, ᾱ) > 0}.

The real Lie group SO(Lprim,R) ∼= SO(20, 2) acts transitively on U. More-
over SO(Lprim,R) has two components: one of them acts by exchanging
H3,1(X) and H1,3(X). U has two connected components which parametrize
the subspaces H3,1(X) and H1,3(X). We denote the first one by D′. It is a
20-dimensional open complex manifold, called local period domain for cu-
bic fourfolds with markings. So the marking associates to X an element
of D (its period point). This is the classifying space for polarized Hodge
structures arising from cubic fourfolds.

We denote by Γ ⊂ Aut(H4(X, Z)) the set of lattice automorphisms
preserving the class h2 and by Γ+ ⊂ Γ be the subgroup preserving D′.

Definition 2.3.2. The orbit space D := Γ+\D′ is called global period domain.

This is indeed a 20-dimensional quasi-projective variety. In fact in [Sat]
it is shown that the manifold D′ is a bounded symmetric domain of type
IV. The group Γ+ is arithmetically defined and acts holomorphically on
D′. In this situation we may introduce the Borel-Baily ([BB]) compactifi-
cation compatible with the action of Γ+, so that the quotient is projective.
Moreover, D is a Zariski open subvariety of this quotient.

Observe that any cubic fourfold X determines uniquely a point in D.

Definition 2.3.3. The map P : C◦ → P(C◦) ⊂ D is called the period map.

By Hodge theory, this a holomorphic map of analytic spaces (actually
it is algebraic). The main result in [Vo] is the following.
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Theorem 2.3.4 (Global Torelli). P is an isomorphism of complex analytic vari-
eties.

It turns out that it is a local isomorphism. So it is sufficient to show that
it is injective. To show this fact Voisin used an alternative description of
the central cohomology of a smooth cubic fourfold.

The idea of Voisin for her proof of Torelli theorem for X was to:

1. how that P|H is injective, where H is the codimension 1 subvariety
given by cubics containing a plane;

2. show that P−1(P(H)) = H;

3. show that P is unramified in codimension 1.

Suppose that X is a cubic fourfold containing a plane Π. Let

Π′ := {S ∈ G(3, 5) : Π ⊂ S}

be the family of 3-dimensional projective subspaces containing Π. We
have that Π′ ∼= P2. There is a natural projection map

P5 \Π Π′
P Π ∧ P

π

the induced morphism
π̃ : BlΠ X → Π′

is a quadric surface fibration with singular fibers over a sextic curve C ⊂
Π′. Let

f : F1(X/P2)→ P2

be the relative variety of lines of the quadric fibration, i.e. f−1(p) is the
Fano variety of lines of the quadric surface π̃−1(p). The Stein factorization
of f is

F1(X/P2) S P2
q r

where q is a P1-bundle and r is a double cover branched along C. Then S
is a degree 2 K3 surface which parametrizes the rulings of the fibres of π̃.
The idea is to connect the cohomology of S to the cohomology of X and
then to use the Torelli theorem for K3 surfaces.
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Let D ⊂ F(X) be the subvariety of F(X) parametrizing the lines meet-
ing Π. It can be described in the following way:

D := π1({(l, s) ∈ F(X)× S : l ∈ q−1(s)}).

Note that q−1(s) is the ruling of lines parametrized by s.

Proposition 2.3.5. The restriction to π2(D) of the Abel-Jacobi map is an isomor-
phism of Hodge structures

α : H4(X, C)→ H2(D, C).

Proof. We prove the dual version of the theorem, showing that

α∗ : H2(D, C)→ H4(X, C)

is an isomorphism. Let ZD ⊂ D × X be the restriction of the incidence
variety to D. The projection π2 : ZD → X is a morphism of degree 2.
Let x ∈ X −Π such that the quadric surface determined by x is smooth,
then there are exactly two lines of this quadric containing x. So the map
π∗2 : H4(ZD, C)→ H4(X, C) is surjective. Moreover,

H4(ZD, C) = p∗1(H2(D, C)⊕H4(D, C))

and the map H4(D, C) → H4(X, C) factors through H4(Y, C), where Y is
a hyperplane section of X. Since the image of H4(U, C) is contained in the
image of H2(D, C) we have that α∗ is surjective. A dimension count shows
that the two spaces have the same dimension, so α is a bijection.

Since D is a fibration over S whose fibres are rational curves, we have
that the Hodge structure of D is identified to the one of S, then the period
map on the space of cubics containing a plane can be identified with the
period map on F2 (since S has degree 2).

More precisely, let Π, Q be the cohomology classes in H4(X, Z) of a
plane and of a quadric such that Π + Q = h2. Denote by W the image in
H2(D, Z) under the restriction of the Abel-Jacobi map to the orthogonal
complement of Span(Π, Q).

Proposition 2.3.6. The subspace W is contained in q∗H2(S, Z)prim and, for any
a, b, orthogonal to Π and Q, we have that

(a, b)X = −〈α(a), α(b)〉.
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In H2(S, Z) there is a special class k such that

W = {a ∈ H2(S, Z)0 : 〈a, k〉S ≡ 0(mod 2)}.

We can identify k as a class in H2(S, Z/(2Z)) inducing morphisms in
Hom(H2(S, Z)prim, Z/2Z).
One may compute in NS2(X) the products:

〈P, Q〉 = 3, 〈Q, Q〉 = −4, 〈P, Q〉 = −2.

The idea of Voisin was that the lattice H4(S, Z) is obtained from the or-
thogonal sum

Span(P, Q)⊕W.

For this, Voisin also needed that W∗/W ∼= Z/8Z and that the module
Span(P, Q)⊕W can be extended to a unimodular lattice with an integral
bilinear form.

The last thing to be proved was the if two lattices W, W ′ determine
isomorphic Hodge structures on the cubic, then they induce an automor-
phism of H2(S, Z) sending one to the other, while preserving the Hodge
structure and the polarisation. All these facts can be summarized in the
following statement.

Theorem 2.3.7. The Hodge structure on S plus the choice of the lattice Span(P, Q) ⊂
H4(S, Z) determine S. Conversely the polarised Hodge structure of S plus the
distinguished class k determine the Hodge structure of S.

This defines a morphism from the moduli space of cubics containing a
plane to F2.

2.3.2 Special Cubic Fourfolds

Every smooth cubic fourfold X contains surfaces which are not complete
intersections. A typical example is the intersection

S = X ·P1 ×P2,

where P1 ×P2 denotes the Segre embedding of such a product in P5. It is
obvious that S is a surface of degree 9 which is not a complete intersection.
However the class of S in H4(X, Z) is the class of a complete intersection.
Indeed consider the scheme defined by y = x3 = 0, where y and x are
independent linear forms on P5. Then it is easy to see that the non reduced
complete intersection So = X · {y = x3 = 0} and S are homologous in X.
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Notice also that the class of So in H4(X, Z) is 3h2, where h ∈ H6(X, Z)
is the class of a hyperplane section. Hence we can certainly conlude this
introductory remark and example by saying that:

S has the homology class of a complete intersection.
After this remark, the natural question to be proposed is:

Which are the families of smooth cubic fourfolds containing surfaces S which
are not homologous in X to a complete intersection?

We will see that, in the moduli of cubic fourfolds, there are countably
many divisorial families of cubic fourfolds X containing surfaces which in
X are not homologous to a complete intersection.

In the moduli space their union is the locus of classes of cubic fourfolds
X such that the Neron-Severi group NS2(X), of codimension 2 algebraic
cycles modulo numerical equivalence, has rank at least 2.

Let us preliminarly recall on this subject that the Hodge conjecture is
true for smooth cubic hypersurfaces, so that

NS2(X) = H4(X, Z) ∩H3,1(X)⊥

This case of the Hodge conjecture is due to Zucker, [Zuc]. The Hodge-
Riemann bilinear relations imply that NS2(X) is positive definite.

Definition 2.3.8 ([Has1, 3.1.1]). A cubic fourfold X is special if it contains an
algebraic surface T which is not homologous to a complete intersection.

In particular X is special if and only if and only if

NS2(X)prim := NS2(X) ∩H4(X, Z)prim 6= {0}
Definition 2.3.9. Let K be a positive definite lattice of rank two with a given
distinguished element h2 such that (h2)2 = 3. A K-marked special cubic fourfold
is a pair (X, ϕ), where

ϕ : K → NS2(X)

is a primitive embedding preserving the image of h2.

A labelling of a K-marked special cubic fourfold is the the vector ϕ(K).
A special cubic fourfold is called typical if it has a unique labelling. The
definition of speciality can be expressed in terms of Hodge structures. As
above we denote by L our abstract cubic fourfold lattice.

Definition 2.3.10. Let D′ ⊂ P(LC) be the space parametrizing Hodge struc-
tures. For any K ⊂ L primitive of rank 2 and containing h2, we denote by

D′K := {x ∈ D′ : Kprim ⊂ x⊥}.

Here Kprim = K ∩NS2(X)prim.
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2.3.3 The admissible divisorial families

The spaces D′K are hyperplane sections of D′ and in fact irreducible di-
visors. Let Γ+

K ≤ Γ+ be the subgroup preserving the lattice K. Then the
image of the natural map

Γ+
K \D

′
K → D := Γ+\D′

is an irreducible divisor in D. It turns out that two distinct lattices K1 and
K2 correspond to the same divisor of D if and only if there exists γ ∈ Γ+

such that γ(K1) = K2.
An important property of special cubic fourfolds is that they are dis-

tributed in a countable family of irreducible divisors, more precisely:
Let K ⊂ NS2(X) be a positive definite rank-two saturated sub-lattice

containing h2 and let [K] be the Γ+-orbit of K. Let C[K] be the family of
special cubic fourfolds X such that NS2(X) ⊃ K′ for some K′ ∈ [K].

Theorem 2.3.11 ([Has1, 3.1.4]). Then C[K] is an irreducible (possibly empty)
algebraic divisor of C. Every special cubic fourfold is contained in some such C[K].

The main steps of Hassett’s proof of 2.3.11 are to:

1. Give the an Hodge-theoretical interpration of being special: X is spe-
cial if and only if NS2(X)prim ∩H3,1(X, C)⊥ 6= {0}.

2. Use the Hodge-theoretical interpretation to interpret each divisor as
an hyperplane section of the period domain.

3. Interpret any divisor as a quotient of a bounded symmetric domain
of type IV by an arithmetic group acting holomorphically. This al-
lows to prove that the divisor is irreducible and algebraic.

Two saturated sub-lattices of NS2(X) containing h2 in the same Γ+-orbit
have obviously the same discriminant. The converse is true.

Proposition 2.3.12 ([Has1, 3.2.4]). Let K, K′ be saturated rank-two non-degenerate
sub-lattices of L containing h2. Then K = γ(K′) for some γ ∈ Γ+ if and only if
K and K′ have the same discriminant.

The proposition above combined with theorem 2.3.11 implies that the
irreducible divisorial families of special cubic fourfolds are labelled by 2×
2 symmetric matrices with non negative integer entries.

Definition 2.3.13 ([Has1, 3.2.1]). Let X be a special cubic fourfold. A la-
belling of X is a choice of saturated rank-two sublattice K ⊂ NS2(X) con-
taining h2. The discriminant of (X, K) is the determinant of the intersection
matrix of K.
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2.3.4 The Noether-Lefschetz divisors of C
Not for all d ∈ N+ there exist labelled cubic fourfolds (X, K) of discrimi-
nant d. Hassett shows in [Has1, 3.2.2] the following fundamental result

Theorem 2.3.14 (Hassett Existence Theorem). Let X be a stable cubic fourfold,
then a labelled cubic fourfold (X, K), with K of discriminant d, exists if and only
if

d > 0 and d ≡ 0, 2( mod 6).

In this case X defines a point in C of an irreducible divisor Cd which is the closure
of the isomorphism classes of cubic fourfolds labelled by the same K.

[Has1, 3.2.2], [Has1, 4.3.1]. Every divisor in C which is labelled by
some K is often called a Noether-Lefschetz divisor. In other words a Noether-
Lefschetz divisor of C is an irreducible divisor whose general point is de-
fined by a cubic fourfold X such that NS(X) ∼= K for some K as above.

We discuss more on this theorem in the next chapter. In it a special
sequence of effective divisors Cd is related to K3 surfaces. The union of the
divisors of a suitable, proper sub-sequence of it is conjecturally the locus
in C, parametrizing rational cubic fourfolds.

2.3.5 The boundary of C◦

A natural question is to know the complement of the locus of periods of
smooth cubic fourfolds inside the period space D. For the values d = 2, 6
it is known that the divisors D2,D6 are in this complement.

Anyway, as explained in section 4.2 of [Has1], the Torelli map can be
extended to the divisor in C parametrizing cubic fourfolds with one ordi-
nary singular point and its image is D6. More precisely there is a natural
sextic K3 surface associated to a cubic fourfold with an ordinary double
point. The extended Torelli map associates any [X] ∈ C̃ \ C to the limiting
Hodge structure arising from the smoothing of X.
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Cubic fourfolds and K3 surfaces

3.1 Nodal cubic fourfolds

For this section we assume that X is a cubic fourfold with an ordinary
singular point o and such that Sing(X) = {o}.

3.1.1 The natural desingularization

3.1.2 The associated K3 surface S

The projection from o gives a birational map

πo|X : X 99K P4.

CoX∩X is a cone over a sextic K3 surface S = πo(CoX∩X). So S parametrizes
the lines contained in X passing thorugh o. It follows that πo|X factors as

BlS P4 X

P4

q1

q2

The map q1 is the blow-up of the double point o and q2 is the blow-down
of the lines contained in X passing through o.

This construction induces a birational map

C6 := C \ C◦ → F4.

35
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3.1.3 S[2] and F(X)

There is a birational correspondence

S[2] F(X)
`1 + `2 `3

f

where S is interpreted as the set of lines of X passing through o and

`1 + `2 + `3 = 〈`1, `2〉 · X

Notice that f is a morphism if no plane through o is in X. Assuming this
it is known that F(X) is the 2-symmetric product of S, that is

F(X) = S× S/ < i >,

where i is the involution exchanging the factors of S × S. Moreover the
morphism f : S[2] → F(X) is the usual map whose inverse is the blowing
up of the diagonal ∆S of S× S. In particular it turns out that

Sing(F(X)) = ∆S.

3.2 Cubic fourfolds with an associated K3

3.2.1 The admissible Neron-Severi lattices Ld

Not for all d ∈N+, the divisor Dd is non-empty.

Proposition 3.2.1 ([Has1, 3.2.2]). Let (X, K) be a labelled cubic fourfold of dis-
criminant d. Then

d > 0 and d ≡ 0, 2( mod 6).

3.2.2 The admissible divisors Cd

We have seen that D2 correspond to limiting Hodge structure of cubic
fourfolds singular along a Veronese surface.
D6 corresponds to limiting Hodge structures of cubic fourfolds having

an ordinary double point, so there are no smooth cubic fourfolds in C6.

Theorem 3.2.2 ([Has1, 4.3.1]). Existence of special cubic fourfolds] Let d >
6 be an integer with d ≡ 0, 2( mod 6). Then Cd ∩ C◦ is non-empty.
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Hassett used a deformation argument to prove this fact: first he de-
scribed special cubics in C6 admitting a labelling of discriminant d. Then
he proved that there is a smoothing

X → B,

where Xt is smooth for t 6= 0. In particular this proves that C◦ ∩ Cd is
non-empty for t 6= 0.

3.2.3 The Hassett correspondence Cd → Fg, g = 1
2d + 1

Definition 3.2.3. Let (X, Kd) be the labelled special cubic fourfold of dis-
criminant d. By definition, the orthogonal complement to Kd

K⊥d ⊂ H4(X, Z)⊥

is the nonspecial cohomology lattice of (X, Kd). WX,Kd denotes the polar-
ized Hodge structure on H4(X, C)prim. This is called the nonspecial coho-
mology of (X, Kd).

Theorem 3.2.4 ([Has1, 5.2.1]). Let (S, Kd) be a labelled special cubic fourfold of
discriminant d, with nonspecial cohomology WX,Kd . There exists a polarized K3
surface (S, L) such that

WX,Kd
∼= H2(S, C)prim(−1)

if and only if the following conditions are satisfied:

1. 4 - d and 9 - d;

2. p - d if p is an odd prime such that p ≡ 2( mod 3).

We denote by Λprim,d the lattice isomorphic to the middle cohomology
of a K3 surface of degree d. The theorem asserts that there is an isomor-
phism of lattices K⊥d

∼= Λprim,d. In this situation WX,Kd(+1) has the form
of the primitive cohomology of a quasi polarized K3 surface. The Torelli
theorem for K3 surfaces allows to reduce the theorem to the following
proposition:

Proposition 3.2.5 ([Has1, 5.2.2]). Let Λprim,d be the cohomology lattice of a
degree d K3 surface and let K⊥d be the nonspecial cohomology of a labelled cu-
bic fourfold of discriminant d. Then K⊥d

∼= Λprim,d if and only if the following
conditions are satisfied:
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1. 4 - d and 9 - d;

2. p - d if p is an odd prime, p ≡ −1( mod 3).

These values of d are called admissible.
Hassett makes explicit the relation between Fg and Cd, where d = 2g−

2 is an admissible value.

Theorem 3.2.6. Let d be an admissible value and jd : K⊥d → −Λprim,d an
isomorphism. Denote by Cmar

d the moduli space of marked special cubic fourfolds
of discriminant d. If d 6= 6 there is an induced isomoprhism

id : Dmar
d → Fg

Furthermore Dlab
6 → F4.

Proposition 3.2.7. The natural map

Dmar
d → Dlab

d

is an isomorphism of d ≡ (2 mod 6) and a double cover if d ≡ (0 mod 6).
Furthermore Dmar

d is connected for all admissible d 6= 6.

From the previous results one can conclude that, for an admissible
value of d = 2g − 2 and d > 6, Hodge theory defines a natural rational
map

f : Fg → Cd.

This has degree two if d ≡ (0 mod 6) and one if d ≡ (2 mod 6). For
d = 6 has degree 1.

3.3 Examples and the rationality problems

In this section we describe some example of divisors of special cubic four-
fold and a some results about rationality. For any surface S contained in
a smooth 4-dimensional smooth projective variety X the equality 〈S, S〉 =
c2(NS/X) holds. In particular if X is a cubic fourfold we have that

〈σ, σ〉 = 6h2 + 3hKS + K2
S − χS, (3.1)

where σ is the class of S in NS2(X) and χS is the Euler characteristic.
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3.3.1 d=8: Cubic fourfolds containing a plane

Suppose that X is a smooth cubic fourfold containing a plane P. Using
formula 3.1 it can be easily proved that [P]2 = 3 in NS2(X). it follows that

K8 =

(
3 1
1 3

)
,

which has discriminant 8. So C8 ⊂ C can be parametrized as the locus of
cubic fourfolds containing a plane. There are other possible characteriza-
tions, for example:

1. Cubic fourfolds containing quadric surfaces: by taking the residue
intersection of X with a P3 containing P;

2. Cubic fourfolds containing a quartic del Pezzo surfaces: the residue
intersection of a quadric threefold containing a quadric Q contained
in X.

3.3.2 d=12: Cubic fourfolds containing a cubic scroll

Let X be a smooth cubic fourfold containing a rational normal cubic scroll
R. We have

〈ρ, ρ〉 = 7,

where ρ is the cohomology class of R. Then the intersection matrix of h2

and ρ is (
3 3
3 7

)
,

whose determinant is 12. It can be proved that the closure of the locus of
cubics containing such a scroll is an irreducible family in C, whose closure
is then C12.

3.3.3 d=14: Cubic fourfolds containing a quartic scroll

Let X be a smooth cubic fourfold containing a rational normal quartic
scroll R. We have

〈ρ, ρ〉 = 10,

where ρ is the cohomology class of R. Then the intersection matrix of h2

and ρ is (
3 4
4 10

)
,



CHAPTER 3. CUBIC FOURFOLDS AND K3 SURFACES 40

whose determinant is 14. It can be proved that the cubics containing such
a scroll form an irreducible divisor in C, which is then C14. Moreover, for
any such X, the family quartic scroll contained in X is the associated K3
surface.

3.3.4 d=20: Cubic fourfolds containing a Veronese surface

Let X be a smooth cubic fourfold containing a Veronese surface V. We
have

〈v, v〉 = 12,

where v is the cohomology class of V. Then the intersection matrix of h2

and v is (
3 4
4 12

)
,

whose determinant is 20. It can be proved that the cubics containing a
Veronese surface form an irreducible divisor in C, which is then C20.

3.3.5 d=26: Cubic fourfolds containing a 3-nodal septic scroll

This characterization was introduced by Farkas and Verra in [FV1].

Definition 3.3.1. A smooth septic scroll is a surface R′ ⊂ P8 which is im-
age the map

φ|4l−3E| : F1 = Blo P2 → P8

up to linear transformations of P8.

Lemma 3.3.2 ([FV1, 3.1]). Let R′ ⊂ P8 be a smooth septic scroll. Let a1, a2, a3 ∈
Sec(R′) be general points and set Λ := Span({a1, a2, a3}) ∈ G(3, 9). Let
π : R′ → P5 be the projection with center Λ. Then Im(π) has three non-
normal nodes corresponding to three bisecant lines passing through a1, a2, a3 and
no further singularities.

The lemma above justifies the following:

Definition 3.3.3. Let R′, Λ and π as in the above lemma. Then R := Im(π)
is called a 3-nodal septic scroll.

It can be proved that, for the class ρ′ of a 3-nodal septic scroll R′ con-
tained in a smooth cubic fourfold X, one has:

〈ρ′, ρ′〉 = 25.
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So the intersection matrix of h2 and ρ′ is(
3 7
7 25

)
,

whose determinant is 26. It can be proved that the cubic fourfolds con-
taining a 3-nodal septic scroll form an irreducible divisor in C, which is
C26.

3.3.6 The family of divisors Cd, d = 2(n2 + n + 1) and the
rationality problem

The values d = 2(n2 + n+ 1) with n ≥ 2 are all admissible. Hasset showed
in [Has1, Sec. 6] that there is an isomorphism

F(X) ∼= S[2].

For each point of S it is possible to define a curve in S[2]:

∆p = {ξ ∈ S[2] : Supp(ξ) = p}.

Then, for d = 2(n2 +n+ 1)1, there is a family of curves in F(X) parametrized
by points of S. Such a curve in F(X) naturally corresponds to a rational
scroll contained in X. The associated K3 surface has the following inter-
pretations for small values of d = 2(n2 + n + 1):

1. for X ∈ C14 it is the Hilbert scheme of quartic scrolls contained in X;

2. for X ∈ C26 it is the Hilbert scheme of 3-nodal septic scrolls contained
in X (see for example [FV1]);

3. for X ∈ C42 it is the Hilbert scheme of 8-nodal nonic scrolls contained
in X (see for example [FV2]).

The interest on these families of divisors relies on the fact that they are
conjectured to contain all the rational examples. Kuznetsov gave in [Kuz]
a categorical condition for the rationality:

Conjecture 3.3.4 ([Kuz, 1.1]). A smooth cubic fourfold is rational if and
only if its Kuznetsov component Ku(X) is derived equivalent ot a K3 sur-
face.

1Actually this condition is stronger than having an associated K3.
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Addington and Thomas proved in [AT] that the Kuznetsov condition
is equivalent to the fact that X ∈ Cd for d admissible. The conjecture has
been proved for the initial values of d. Morin proved in [Mor1] that a cu-
bic fourfold containing a quartic rational normal scroll is rational, which
is the initial case for d > 6. Morin claimed that all cubic fourfolds contain
a quartic rational normal scroll (and hence it is rational), Fano in [Fa] dis-
covered the error in the Morin’s argument. See more in the Introduction
to chapter 4. This result has been recently extended by M. Bolognesi, F.
Russo and G. Staglianò in [BRS]:

Theorem 3.3.5. Every cubic fourfold in C14 is rational.

In [RS1] and [RS2] F. Russo and G. Staglianò proved the rationality of
cubic fourfolds for the first four cases of Hassett divisors.

Theorem 3.3.6.

• Every smooth cubic fourfold in C26 and C38 is rational ([RS1]).

• Every smooth cubic fourfold in C42 is rational ([RS2]).
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Pfaffian cubic fourfolds

4.1 Historical Introduction

In what follows a Pfaffian cubic fourfold X ⊂ P5 is, by definition, just a
cubic fourfold whose equation is the Pfaffian of an order 6 skew symmetric
matrix of linear forms. Let us also fix the following notation:

C := |OP5(3)|

and
Cd ⊂ C

for the the closure of the family of stable cubic fourfolds X defining a point,
in the GIT-moduli space C of cubic fourfolds, of a Noether-Lefschetz divi-
sor Cd, (for a given integer d such that the corresponding Cd is not empty).

We have already mentioned the well known property that Cd is an irre-
ducible divisor. This implies that Cd is an irreducible divisor in C. This is
actually the closure of the union of the Aut P5-orbits of those stable cubic
fourfolds X defining a point of Cd. Let us also recall that the closure of the
family of Pfaffian cubic fourfolds is the irreducible divisor

C14 ⊂ C.

We have already considered C14 when considering the results of Beauville
and Donagi on the Fano variety of lines of a smooth cubic fourfold. The
family C14 actually admits very interesting characterizations and incarna-
tions, so to say. The main results of our work, we are now going to show,
are concentrated on C14, its related moduli space F8 of K3 polarized sur-
faces and on the intersection C14 ∩ C6 in C. It is due to put the family of
Pfaffian cubic fourfolds in a historical perspective, because of its relevance
from the historical side as well. This is part of our program for this section.

43



CHAPTER 4. PFAFFIAN CUBIC FOURFOLDS 44

Roughly speaking the family of Pfaffian cubic fourfolds generically co-
incides with the family of smooth cubic fourfolds containing a rational
normal quartic scroll. Interestingly, the latter family is not open in C14, as
proved by Bolognesi, Russo, Staglianò in [BRS]. Another well known con-
dition, characterizing this family, is that X ∈ C14 contains a smooth quintic
Del Pezzo surface. As Beauville shows, this latter condition is satisfied by
all smooth elements of C14.

Notice also that a smooth quintic Del Pezzo surface Y is contained in
the Segre embedding of P1×P2 in P5 as a divisor whose bidegree is (1, 2).
Actually, as is well known from the classical geometry of a smooth quintic
Del Pezzo surface ([Dol2]), Y is contained in exactly five embeddings of
this type. In particular it follows that

X · (P1 ×P2) = Y ∪ R.

Here R is a rational normal quartic scroll or a reducible degeneration of it.
The family of cubic fourfolds considered generically coincides with the

Pfaffian family and it is important from several points of views. To begin
from history, let us say that cubic fourfolds X containing a rational normal
quartic scroll R were studied by Ugo Morin, with the purpose of proving
the rationality of a general smooth cubic fourfold, [Mor1]. The existence
of such an R in X implies indeed, as proven by Morin in [Mor1], that X is
birational to the Hilbert scheme Hilb2 R of two points of R.

The reason is that R, as the quintic Del Pezzo surface, is an OADP-
surface. OADP is the acronymous one apparent double point and means that
a unique bisecant line to R exists, passing thorugh a general point x ∈ P5.
This property makes possible to construct a birational map

b : X → Hilb2 R,

sending x ∈ X to lx ∈ Hilb2 R, where lx = Lx · R and Lx is the bisecant
line to R passing through x. However the proof of Morin that a general
cubic fourfold contains a smooth rational quartic scroll is wrong. Indeed a
parameter count he uses to deduce that a general cubic fourfold X contains
a rational nomal scroll, is virtually correct, but unfortunately not effective
in the situation considered.

From today’s point of view, notice also that a very general X satisfies
the Noether-Lefschetz property. Then any surface in X is homologous to
complete intersections and its degree is multiple of 3. Hence no rational
normal quartic scroll R exists in a general X.

Pfaffian cubic fourfolds reappeared, after some decades, in a very fa-
mous paper by Beauville and Donagi, [BD], we have just considered in a
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previous section. In it, as mentioned, the strict relation between a general
Pfaffian cubic fourfold X and a general K3 surface S of genus 8 is dis-
covered and it is shown that the Fano variety of lines F(X) is biregular
to S[2], the Hilbert scheme of two points of S. This property, though not
written with the same language, is also proven by Fano via more classical
and birational techniques. In [Fa], Fano shows that a general point of the
Fano variety of lines of F(X) corresponds to a line in X which is contained
in exactly two rational normal quartic scrolls of the Hilbert scheme of R.
Since, as we better know nowadays, the Hilbert scheme HilbR of R is the
previous K3 surface S, the property proven by Fano defines a map

f : F(X)→ S[2]

sending the line l ∈ F(X) to the unique unordered pair of points r1, r2 ∈
S, corresponding to the unordered pair of rational normal quartic scrolls
R1, R2, of the Hilbert scheme HilbR, having the line l as a bisecant line.

Notice that Fano’s construction automatically implies that Morin’s pa-
rameter count and argument does not effectively work. This remark is a
motivation of Fano’s paper ([Fa]).

Even more interestingly, the mentioned results imply, as we already
observed elsewhere, that the Fano variety of a general cubic fourfold is a
hyperkähler fourfold and a smooth deformation of S[2].

Actually, in the frame of Hassett theory [Has1], pure Hodge theoretic
methods define a birational map

f : C14 → F8

which associates to the isomorphism class of a general Pfaffian cubic four-
fold X the isomorphism class of the K3 surface S, whose intermediate
Hodge structure is naturally embedded in the intermediate Hodge struc-
ture of X. From a more geometrical point of view, f associates to the iso-
morphism class of X the isomorphism class of the unique K3 surface S
such that S[2] ∼= F(X), via the previous geometric construction.

Among several other facts and properties, it is worth to point out that
C14 was for longtime the only known divisor, not in the boundary of C, was
general point represents the GIT-class of a smooth rational cubic fourfold.
As is well known, three new divisors with the same property have been
very recently constructed by Russo and Staglianò, see [RS1] and [RS2].
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4.2 The general Pfaffian cubic

4.2.1 Lines and alternating forms of P5

We begin with a 6-dimensional complex vector space V and the Grass-
mann variety of lines of the 5-dimensional projective space P(V). Let

G ⊂ P(
2∧

V)

be the Plücker embedding of this Grassmannian, following [BD] and [Bolognesi-
Verra], we consider the space Alt(V) of antisymmetric linear forms

a : V ×V → C.

Then we consider the natural duality

w :
2∧

V ×Alt(V)→ C.

This is defined by setting w(v1 ∧ v2, a) := a(v1, v2) and extending the map
by linearity. For further convenience we fix the notation

P14 := P(Alt(V)).

With a slight abuse a non zero vector a ∈ Alt(V) and the point defined by it
in P14 will be denoted in the same way. Moreover, our constant convention
is to reserve the notation P5 for any 5-space contained in P14.

Let us consider the natural pairing

p :
2∧

V ×
4∧

V →
6∧

V,

such that (a, b) = a∧ b. This induces an identitification of projective spaces

P14 = P(
4∧

V).

Definition 4.2.1. The general Pfaffian cubic is the hypersurface

D := {a ∈ P14 | a is degenerate}.

It is a basic property that P14 is a quasi homogeneous space with re-
spect to the action of the projective linear group Aut P(V). The set of its
orbits is indeed finite and each orbit is the set of those elements a having
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the same rank. This is of course true for a vector space V of any dimen-
sion. As is well known, the rank of an alternating form is even if V has
even dimension. Let us describe what happens in our case of dimension
six. Let

Ĝ : {a ∈ P14 | rank a = 2},

we just have Ĝ ⊂ D ⊂ P14 and the orbits are

Ĝ , D \ Ĝ , P14 \D.

Definition 4.2.2. Let a ∈ D. We denote by Ka the projectivization of ker(a).

Notice that, in the space P14 = P(
∧4 V), the locus Ĝ is precisely the

locus of reducible non zero vectors v1 ∧ v2 ∧ v3 ∧ v4. On other words Ĝ is
the Plücker embedding of the Grassmannian variety of 4-spaces of V. The
geometric interpretation of the stratification is nice and very well known,
therefore let us see more of it, [Russo-book], [Fulton-Lazarsfeld].

Though not strictly necessary, we fix from now on a basis e1, . . . , e6 of
V. Let e∗1 , . . . , e∗6 be its dual, then any a ∈ Alt(V) is uniquely written as

a = ∑ aije
∗
i ∧ e∗j

with i ≤ j and aij = −aji. These are Plücker coordinates for a and we can
think of P14 as of the projective space of the antisymmetric matrices

A = (aij).

Theorem 4.2.3.

• The Pfaffian of (aij) is the equation of D.

• Sing(D) = Ĝ.

• D is the variety of bisecant lines to Ĝ.

We recall that, for a smooth projective variety V ⊂ Pr, the Secant va-
riety Sec(V) is the union of the lines L ⊂ Pr such that the scheme L · V
has length ≥ 2 and the Tangent variety Tan(V) is the union of all the lines
tangent to V. It is not difficult to see that one has the equality

Sec(Ĝ) = Tan(Ĝ) = D.

Indeed let L be a bisecant line to G in two distinct points, then the scheme
L ·D has length ≥ 4. Hence, by Bézout theorem, L ⊂ D̂. The same is true
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for a tangent line to Ĝ, since it is limit of bisecant lines. Hence it follows
Sec(Ĝ) ⊆ D. Finally let a ∈ D, then the matrix a = (aij) has rank 2 or 4.
If the rank is 2 then a ∈ Ĝ. If the rank is 4 then (aij) = (a1

ij) + (a2
ij), where

the summands are antisymmetric matrices of rank 2. Hence a belongs to
the line joining the two points ak = (ak

ij), (k = 1, 2), of Ĝ.

Finally it is worth to recall that Ĝ is one of the four Severi varieties.
These are the only smooth, irreducible projective varieties V of dimension
d in Pn which are not contained in a hyperplane and satisfy the conditions

3
2

d + 2 = n , Sec(V) 6= Pn.

Their importance is due to Hartshorne’s conjecture on linear normality
and Zak’s proof of it. This says that no V as above exists such that 3

2 d+ 2 >
n and Sec(V) 6= Pn.

Keeping the previous convention, let p = ∑ pijei ∧ ej be any vector of∧2 V, so that the antisymmetric matrix of its Plücker coordinates is (pij).
Then, in a totally analogous way, it turns out that

G ⊂ D̂ ⊂ P(
2∧

V).

Here we fix the notation D̂ for the Pfaffian of det(pij).

4.2.2 The birational duality

In this paragraph we recall the very special feature of the Pfaffians

D ⊂ P14 and D̂ ⊂ P(
2∧

V).

Both are indeed homaloidal hypersurfaces. For a reduced hypersurface Y
in Pr, with coordinates (zo : · · · : zr), the partial derivatives of the equation
F of Y define a well known rational map in the dual projective space Pr∗

with dual coordinates. This is of course the duality map

φ : Pr 99K Pr∗,

such that

φ(z) =

[
∂F
∂zo

(z) : · · · :
∂F
∂zr

(z)

]
.
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Let z ∈ Y \ Sing(Y), then φ(z) is defined by the coefficients of the equation

r

∑
i=0

∂F
∂zi

(z)zi = 0

of the tangent hyperplane to V at z. It is clear that φ does not depend from
the choice of the coordinates. Roughly speaking we can say that:

φ(V) is the parameter space for the singular hyperplane sections of V \ SingV.

Definition 4.2.4. A reduced hypersurface Y is homaloidal if φ is birational.

Homaloidal hypersurfaces are very special and often very interesting.
As is well known the restriction of φ to Y is a birational morphism

φ|Y : Y → φ(Y)

if Y is smooth. Moreover, by Zak’s theorem on tangencies, each fibre of
φ|V is finite. Our situation is completely different, as we are going to see.
The properties of the duality maps to be considered are fundamental to
understand the geometry of the elements of the Morin hypersurface C14.

Recall that, for this section, P14 = P(
∧2 V). Under the natural identi-

fications we have, the spaces P14 and P(
∧2 V) are dual, with their respec-

tive Plücker coordinates (pij) and (aij). Consider

a = (aij) ∈ P14 , p = (pij) ∈ P(
2∧

V)

and the corresponding matrices of cofactors

a∗ = (Aij)
T , p∗ = (Pij)

T.

Then define the following rational maps

∂ : P14 99K P(
2∧

V) and ∂⊥ : P(
2∧

V) 99K P14.

by setting
∂(a) = a∗ , ∂⊥(p) = p∗.

It is known, and easy to check, that ∂ and ∂⊥ are the duality maps of D

and D̂. Their description goes as follows, [Bolognesi-Verra]:

Theorem 4.2.5. The rational maps ∂ and ∂⊥ are the duality maps of D and D̂,
they are birational and each one inverse to the other one.
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Much more is available on these maps, especially from the geometri-
cal point of view. Let us concentrate on ∂ : P14 → P(

∧2 V), keeping in
account that ∂⊥ admits the same (dual) description [Bolognesi-Verra]:

• ∂ is defined by the order 2 minors of the coordinate matrix (aij).
Hence by the equations of the Grassmannian Ĝ, which is the locus of
rank 2 alternating forms a. This implies that ∂ blows up Ĝ.

• Let us consider at first the blowing up of P14 along Ĝ, say

σ : P̃14 → P14.

• The exceptional divisor of σ is a P5-bundle

σ|D̃⊥ : D̃⊥ → Ĝ.

• The strict transform of D is a second interesting divisor, say

D̃ ⊂ P̃14.

Let us recall that ∂ has the following birational factorization.

Theorem 4.2.6. One has the factorization ∂ = σ⊥ ◦ σ, where

σ⊥ : P̃14 → P(
2∧

V)

is the blowing up of G and D̃ is its exceptional divisor.

These are the properties we had to remind in order to describe:

• The family of the tangent hyperplanes to the Pfaffian D,

• an important family of rational normal quartic cones in D.

Remark 4.2.7. A direct computational description of the birational map ∂,
including its special fibres, is available and not difficult.
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4.2.3 The family of tangent hyperplanes to D

Let a = (aij) ∈ P14 \D, then the polar hyperplane Ha to D at a is uniquely
defined, in the obvious Plücker coordinates (xij), by the equation

∑ Aijxij = 0,

where (Aij) = ∂(a). Now the birational duality described in the previous
paragraph just means that the point a is uniquely reconstructed from Ha.
In other words, since D is a homaloidal polynomial, the rational map

a ∈ P14 −→ Ha ∈ P(
2∧

V)

is birational. More precisely, we know from the previous paragraph that
∂ is biregular at any point a ∈ P14 \D, which implies that a is the unique
point having the hyperplane Ha as the associated polar hyperplane.

Let us also recall that P14 \D is an orbit of the action of the projective
linear group on P14. Then it clearly follows that all the hyperplane sections
Ha ∩D are projectively equivalent.

In particular these just form the set of transversal hyperplanes sections of
D. Our interest is however to tangent hyperplane sections to D \ Sing(D).
To understand these hyperplane sections

Ha ∩D, a ∈ D \ Sing D,

we have to recall the structure of the rational map ∂|D. After the due
description of it, the outcome about ∂|D can be summarized as follows.

Theorem 4.2.8. Each point p ∈ G defines a unique hyperplane Hp which is
tangent to D along the linear span of the fibre at p of

∂|D→ G.

Let us summarize more precisely the steps to reach the previous the-
orem. Let us also say that the proof of it is a simple computation, in the
Plücker coordinates we have fixed. In particular notice that the family of
tangent hyperplanes we are considering is one of the three orbits of the
action of Aut P(V) on |OP14(1)|. The hyperplanes of this family are ob-
viously parametrized, not birationally, by the points of D \ Ĝ. Since the
latter set is an orbit, we can conveniently choose the coordinates for a. On
the other hand, as we are going now to see, the tangent hyperplane at a is
uniquely reconstructed from the point p = ∂(a) ∈ G.
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Let p = v1 ∧ v2 then, in the exterior algebra
∧∗ V = ⊕Z

∧i V we can
consider the ideal I generated by v1, v2, that is the orthogonal space of
{v1, v2}with respect to the wedge product. The degree 4 summand I(4) of
Iv1,v2 has the canonical decomposition

I(4) = (
2∧

V ∧ p)
⊕

(
3∧

V ∧Vp)/(
2∧

V ∧ p),

where Vp ⊂ is the 2-dimensional space whose projectivization is the line
defined by p. Notice that the above vector space has dimension 14 and it
is the orthogonal space of p.

4.2.4 The family of rational normal quartic cones

After the description of the family of tangent hyperplanes to D \ Sing D,
and of their peculiar geometry, it is now the moment for considering the
family of rational normal quartic cones which are naturally associated to
the tangent hyperplanes.

The latter family, as we will see, plays a very important role in order
to characterize the family of those cubic fourfolds which are linear sec-
tions of D, singular at some point of D \ SingD. The existence of these
scrolls is implicitly considered in [BD]. In the preprint [Bolognesi-Verra]
their construction is generalized and made very explicit. We are grateful
to the authors for the information about and for the possibility of using
this preprint.

Let us consider any point p ∈ G and the line defined by it, say

`p ⊂ P(V).

We have seen in the previous paragraph how `p uniquely defines a tangent
hyperplane Hp. Actually this is characterized by the condition

Hp ∩ Ĝ = {a ∈ D | p∧ a = 0}.

In other words, under the usual duality
∧2 V ×∧4 V → ∧6 V, we have

Hp = {p}⊥.

Here we adopt the following, more general, definition.

Definition 4.2.9. Let S ⊂ P(
∧2 V) any subset, the orthogonal of S is the

linear space
S⊥ =

⋂
p∈S

Hp.
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We will be mainly interested to the case where S is a linear section of G

and especially a K3 surface. Let p ∈ G, then the geometric description of
Hp ∩D goes as follows. Consider the Schubert hyperplane section

Qp := {a ∈ Ĝ | `p ∩ Ka 6= ∅},

that is the family of alternating forms whose projectivized kernel Ka has
non empty intersection with `p. Notice that Qp contains

Q4
p := Qp ∩ Ĝ = {a ∈ Ĝ | `p ⊂ Ka}

This is just the family of alternating forms a of rank 2 whose projectivized
kernel Ka contains the line `p. An exercise in linear algebra shows that Q4

p

is a smooth quadric in a 5-space contained in D. More precisely let Vp ⊂ V
be the space such that P(Vp) = `p, then we have a linear map

−∧ p :
2∧

V →
4∧

V

defined by the wedge product with p. This linear map induces a canonical
isomorphism

∧2(V/Vp)→
∧2 V ∧ p and a linear embedding

ep : P(
2∧
(V/Vp))→ P(

4∧
V) = P14.

Lemma 4.2.10. The linear span 〈Q4
p〉 of Q4

p is the image of ep, moreover

Q4
p = 〈Q4

p〉 ∩ Ĝ

Proof. Up to a base change we can assume that the vector e5∧ e6 defines the
point p. Then a basis of the space Im(−∧ p) is {ei ∧ ej ∧ p : 1 ≤ i < j ≤ 4}.
This easily implies the statement.

Let us fix our notation as follows:

Definition 4.2.11. P5
p := 〈Q4

p〉.

So P5
p is the linear space contained in D and cutting Q4

p on Ĝ. Let us
continue to geometrically describe Qp though, as we will see, the compu-
tational construction of it as a determinantal quartic cone is easy. Let

a ∈ Qp \Q4
p,

then a is the parameter point of a line Ka ⊂ P(V) such that

Ka ∩ `p := {xa}.
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Indeed, by definition, a ∈ Qp \ Q4
p iff a has rank 4 and the line Ka meets

the line `p exactly in one point. Let

ya ⊂ P(V/Vp)

be the projection of Ka from P1 := `p into the 3-space ’at infinity’

P3 := P(V/Vp).

Then, starting from a, we have constructed the point

(xa, ya) ∈ `p ×P(V/Vp) := P1 ×P3

which is uniquely defined from p. Let us consider the projection of center

P5
p = P(

2∧
V ∧ p) ⊂ Hp = P({p}⊥).

The image of this projection is the space ’at infinity’

P7
p := P({p}⊥/(

2∧
V ∧ p)).

We denote this projection as:

λp : Hp → P7.

Theorem 4.2.12.

• λp(Qp) = P1 ×P3 ⊂ P7.

• Qp is a quartic cone over it.

• Hp is characterized by Qa.

The theorem implies that Qp is a quartic cone of vertex the 5-space con-
taining Q4

p over the Segre embedding of P1 ×P3. Since D \ Ĝ is a orbit of
the action of AutP(V) on Ha, the construction of this cone is projectively
invariant. In the previous Plücker coordinates let a be the antisymmetric
matrix (aij) such that a12 = 0. This is the hyperplane Hp defined by the
line `p with p = e1 ∧ e2 ........ We can write explicitly the equation of this
cone.

The inncidence correspondence, (cfr.[Bolognesi-Verra]):

Q̃ := {(x, a) ∈ `p ×P14 |x ∈ Ka}.
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is defined by bilinear exquations, as we will explain soon. Assume p =
e5 ∧ e6, then a point

λe5 + µe6

of this line is a vector of V of components

(0, 0, 0, 0, λ, µ)

Let A = (aij) be the matrix of Plücker coordinates on P14:

A


0
0
0
0
λ
µ

 =


c15λ + c16µ
c25λ + c26µ
c35λ + c36µ
c45λ + c46µ

λc56
−µc56


The incidence correspondence is just defined as the locus of the solutions
of the previous system of linear equations. Eliminating λ, µ we obtain the
equations of the projection of the incidence correspondence Q̃ in P14:

c56 = 0 , ci,5cj6 − ci6cj5 = 0 , 1 ≤ i < j ≤ 4.

This is the rational normal quartic cone

Qp ⊂ P14.

Theorem 4.2.13. D contains the family of 10-dimensional rational normal quar-
tic cones over the Segre product P1 ×P3:

{Qp : p ∈ G},

parametrized by the Grassmannian G. Each of these defines a hyperplane Hp,
tangent to D along its 5-dimensional vertex P5

p.

Proof. Eliminating λ, µ we have at first c56 = 0, which is the equation of
the hyperplane Hp when p = e5 ∧ e6. Moreover the vanishing of the other
2× 2 minors of the same matrix defines the Segre product P1 ×P3 in the
coordinates

(c15 : c16 : c25 : c26 : c35 : c36 : c45 : c46).

Indeed this property is well known for the Segre product P1×Pr ⊂ P2r−1:
the order 2 minors of the analogous (r + 1)× 2 matrix M = (cij), with i =
1 . . . r, j = 1, 2, are the equations of P1 ×Pr (see for example [Har1]).
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4.3 Pfaffian cubic fourfolds and K3 surfaces

4.3.1 The family of Pfaffian cubic fourfolds

In what follows we concentrate our attention on the family of 5-dimensional
linear sections of the cubic Pfaffian, say

X = L ∩D,

where L ∼= P5.

Definition 4.3.1. Any X as above is a Pfaffian cubic fourfold.

Clearly the equation of X is the Pfaffian of an antisymmetric matrix of
linear forms

cij = cij1t1 + · · ·+ aij6t6,

where (t1 : · · · : t6) are projective coordinates on P5. In a more abstract
way we can consider the universal 5-space

u : P→ Gp f ,

where Gp f denotes the Grassmannian of the 5-spaces in P14.

4.3.2 The family of associated K3 surfaces

Let X = L ∩D be a general Pfaffian cubic fourfold. Then S := L⊥ ∩G is a
K3 surface of degree 14.

Theorem 4.3.2 ([BD, 5]). For a generally chosen Pfaffian cubic fourfold X =
L ∩D, the surface S = L⊥ ∩G is a K3 surface verifying the relation:

S[2] ∼= F(X).

The proof gives the explicit correspondence S[2] → F(X).

Proof. For a general pair of points of G ⊆ P
(∧2 V

)
P = v1 ∧ v2 and

Q = v3 ∧ v4, there is a well defined subspace of P
(∧4 V

)
given by forms

identically vanishing on Span(v1, v2, v3, v4). This is the codimension 6 lin-
ear subspace

L{P,Q} = {[φ] : φ ∧ vi ∧ vj = 0 for 1 ≤ i < j ≤ 4} ⊂ D.
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Suppose now that it is fixed a 5-dimension linear subspace L ⊂ P
(∧4 V

)
and P, Q ∈ S = L⊥ ∩G. Then L and LP,Q are both contained in the 12-
dimensional projective space {P, Q}⊥. So, for a general choice of P and
Q L ∩ LP,Q is a straight line contained in X. Conversely, given a straight
line ` ⊂ X, there is a unique 4-dimensional space W ⊂ V such that W is
isotropic for all the forms in `, i.e.

φ ∧ w1 ∧ w2 = 0 for all φ ∈ `.

Let K ⊂ P(
∧2 V) be the 5-space containing G(2, W). Then L⊥ ∩ K is

a straight line cutting the quadric G(2, W) in two points P, Q such that
Span(P, Q) = W.

4.4 Geometry of Pfaffian cubic fourfolds

4.4.1 Quartic scrolls

Let L ⊂ P(
∧4 V) be a 5-space. Denote

X := L ∩D, S := L⊥ ∩G.

Recall from theorem 4.2.13 that for any point p ∈ S ⊂ G there is an associ-
ated 10-dimensional cone Qp of vertex P5

p over the Segre variety P1 ×P3.
For a general choice of L, L is disjoint from P5

p for any p ∈ S. Note that
〈LQp〉 = {p}⊥. It follows that L∩Qp is isomorphic to a double hyperplane
section of P1×P3. For a general choice of L it is a smooth minimal surface
of degree 4, hence it is a rational normal scroll.

The construction given above gives a one-to-one correspondence be-
tween points of S and the Hilbert scheme of quartic scrolls contained in X.
Recall that there is an isomorphism

G→ {Cones of vertex P5 over P1 ×P3 contained in D},
which maps p to Qp. The inverse map associates a cone Q to the point
pQ ∈ G determined by the property TpQG = Sing(Q)⊥. The restriction
of this map to S composed with the intersection with L gives the desired
correspondence.

4.4.2 Quintic scrolls and quintic Del Pezzo surfaces

Let X be a cubic fourfold and R ⊂ X a general smooth quartic scroll
contained in it. Then R arises as a divisor of a cubic Segre variety T ∼=
P1 ×P2 ⊂ P5 in two different ways:
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(i) As a divisor of type (0, 2). In this case the residual intersecion of
T ∩ X is a quintic scroll;

(ii) As a divisor of type (2, 1). In this case the residual intersection of
T ∩ X is a quintic Del Pezzo surface.

Remark 4.4.1. For any general quartic scroll R, there is only a cubic Segre
variety T such that R ⊂ T is a divisor of type (0, 2): in fact, taken the pencil
of conics contained in R, T is the union of the planes generated by those
conics.

It follows that there is a one-to-one correspondence between quartic
scrolls contained in X and quintic scrolls contained in X.



Chapter 5

Pfaffian and nodal cubic fourfolds

5.1 Introduction and preliminaries

In this part of the thesis we concentrate our attention on two divisors in
the GIT-compactification C of the moduli space of cubic fourfolds with at
worst simple singularities) , constructed by Laza in [Laz1]. The divisors
to be considered are the Morin divisor C14 and the boundary divisor C6,
whose general element is the isomorphism class of a cubic fourfold X such
that SingX is one ordinary double point. As already mentioned these two
divisors are irreducible. We will prove that

C6 ∩ C14 = A∪ B ∪N ,

where A, B are irreducible, 18-dimensional components of C6 ∩ C14 and a
general point x of A ∪ B is defined by a 1-nodal and Pfaffian cubic four-
fold. Moreover N is possibly empty or contained C14 − C

P f
14 , where

CP f
14 ⊂ C14

is the constructible set of points defined by Pfaffian fourfolds. Then its
complement is, so to say, the boundary locus made up by points defined
by cubic fourfolds whose equation is not Pfaffian, though limit of Pfaffian
equations.

We do not address in this thesis the proof of the plausible equality

C6 ∩ C14 = A∪ B.

This somehow relates to a different and possible investigation, concerning
the structure of the boundary locus CP f

14 ⊂ C14. We are grateful to professor
Michele Bolognesi for his advice on the subject and useful comments.

59



CHAPTER 5. PFAFFIAN AND NODAL CUBIC FOURFOLDS 60

The splitting of C6 ∩ C14 is a consequence of the following facts. Let

X = D∩P5

be a general singular linear section of dimension 4, then X has one ordi-
nary node o as its unique singular point and it is obviously clear that

• either o ∈ Sing D

• or o ∈ D \ Sing D.

Counting dimensions, these conditions define two locally closed sets which
are expected to be of codimension one in C14, hence two in C. Passing to
their closures one obtains the mentioned irreducible componentsA and B
of C6 ∩ C14. Let us fix further our notation. We will consider the Grassman-
nian GP f of 5-dimensional linear subspaces of P14. For each z ∈ GP f we
denote by P5

z the 5-space in P14 whose parameter point is z.

Definition 5.1.1. The universal 5-space over GP f is the correspondence

P = {(x, z) ∈ P14 ×GP f | x ∈ P5
z}

endowed with its natural projection morphism u : P→ GP f .

Of course u : P→ GP f is a P5-bundle with fibre P5
z at z. More precisely

it is the projective bundle associated to the universal bundle U of GP f .
From now on we will keep the notation U for the open subset

U ⊂ GP f ,

parametrizing the 5-spaces which are not in D. Over U we define the flat
family of Pfaffian cubic fourfolds

X = {(x, z) ∈ D× U | x ∈ P5
z ∩D},

together with its two natural projections

π1 : X → D, π2 : X → P5
z .

Let z ∈ U then Xz will denote the fibre of υ at z. It is clear that the family

υ : X → U

contains all the Pfaffian cubic fourfolds up to projective equivalence. In
particular U dominates the Morin divisor C14 via the moduli map.
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Definition 5.1.2.

• A is the closure in GP f of:

{z ∈ U | Xz ∩ Sing D = ∅ and SingXz 6= ∅}.

• B is the closure in GP f of:

{z ∈ U | Xz ∩ Sing D 6= ∅}.

Obviously Xz is singular in both the cases.

Lemma 5.1.3. A and B are irreducible divisors in the Grassmannian GP f .

Proof. B is a Grassmannian bundle over Sing(D) with fibre isomorphic to
G(5, 14) ∼= G(4, 13). Sing D is biregular to the Grassmannian G, hence it
is irreducible. Therefore B is irreducible too. To show that A is irreducible
consider the correspondence

X s := {(x, z) ∈ X | x ∈ (Sing Xz) ∩ (D \ Sing D)}

and the projection map φ : X s → D \ Sing D. This is surjective, moreover
its fibre at x is biregular to the Grassmannian G(5, 14). Indeed P5 ∩D is
singular at x ∈ D \ Sing D iff x ∈ P5 ⊂ TD,x, the latter being the tangent
hyperplane to D at x. In particular each fibre of the projection

φ : X s → D \ Sing D

is irreducible, so that X s and φ(X s) are irreducible. Now just observe that

φ(X s) = {z ∈ U | Sing Xz ∩D \ Sing D 6= ∅}.

Hence its closure is A, which is therefore irreducible.

Lemma 5.1.4. Let z ∈ A∪ B be general, then Xz is a 1-nodal cubic fourfold.

Proof. Let x ∈ D, then the family of the 5-spaces P5, passing through x and
contained in the tangent projective space TxD, has x as its only common
point. Applying Bertini theorem to a general P5 in the family, the section
X = P5 ∩D is smooth along X \ {x}. Now let Qx be, the quadratic tangent
cone to D at x. Then its rank is 6 if x ∈ Sing D, cfr. [Mu1] Prop. 1.4. If
x /∈ Sing D then Qx is a quadric of rank 8 in the hyperplane TxD. In both
cases it follows that P5 ∩Qx has rank 5. This implies the statement.
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Definition 5.1.5. A and B are the images in C, via the natural moduli map, of
the hypersurfaces A and B of the Grassmannian GP f .

Now, before passing to next section, it is useful to recall some of the
consequences of Beauville-Donagi paper [BD] and Hassett’s Theory [Has2]
for the situation we are discussing. Let z ∈ GP f we fix the notation

P8
z

for the 8-space of P(
∧2 V) which is orthogonal to P5

z , with respect to our
pairing w :

∧2 V ×∧4 V → C. Let us consider Aut(G) = Aut(P(V)) and

U′ = {z ∈ GP f | P8
z ·G is proper and Aut(P(V))− stable},

then the GIT-quotient U′// Aut P(V) is a projective compactification of the
moduli space of K3 surfaces polarized in genus 8, cfr. [Laz3]. With some
abuse, we will still denote it as F8. Consider in G×U′ the correspondence

S = {(p, z) ∈ G× U′ | p ∈ G ·P8
z},

and the integral, flat family induced by the projection map

υ′ : S ′ → U′.

Then its moduli map m′ : U′ → F8 is dominant with fibre Aut P(V). Let
Sz = υ′∗(z), then m′(z) is the moduli point of the pair (Sz,OSz(1)). We
already mentioned that m : U → C14 is dominant with fibre Aut P(V), in
a completely analogous way. To conclude we point out that the previous
constructions and remarks define a rational map

f : F8 → C14

sending the moduli point of (Sz,OSz(1)) to the moduli point of Xz. This
is a rational map of varieties of the same dimension and it is obviously
invertible. Hence it follows that f is birational, cfr. [Has2].

5.2 The intersection C14 ∩ C6

Let [X] ∈ A ∪ B be a general point then X is 1-nodal and the fibre at [X]
of the moduli map m|A∪B : A∪B→ C is Aut P(V), which is isomorphic to
the projective linear group PGL(6). Counting dimensions it follows

dim A = dim B = 53− 35 = 18.
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As a consequence of the latter equality we can deduce that A and B are
irreducible components of C14 ∩ C6 and hence that

A∪ B ⊆ C14 ∩ C6 ⊂ C.

As announced, we do not address the quite natural equality statement, that
is A∪ B = C14 ∩ C6, but a weaker version of it.

Theorem 5.2.1. AP f ∪ BP f = CP f
14 ∩ C6.

Remark 5.2.2. Since CP f
14 is not open in C14, the equality A∪ B =

5.3 Theorems A and B: the program

Now our purpose is to give appropriate characterizations of the divisors
A and B of C14, deducing in particular that they are distinct. Therefore let
us consider a general Pfaffian and 1-nodal cubic fourfold

X = D∩P5

and let us fix coordinates (t1 : · · · : t6) on P5 so that the origin

o = (0 : 0 : 0 : 0 : 0 : 1)

is the unique singular point of X. Then we can assume that

t6F2 + F3 = 0,

is the equation of X, where F2, F3 ∈ C[t1 . . . t5] are forms respectively of
degree 2 and 3. Since F2 defines the tangent cone to X at the node o, its
rank is 5. Notice also that the forms F2 and F3 define in P5 the cone

F(X)o := {F2 = F3 = 0},

which is union of the lines in X passing through o. Let P4
o be the 4-space

parametrizing all lines through o, we fix on it coordinates

(t1 : · · · : t5)

in the obvious way. This means that (t1 : · · · : t5) defines the line joining o
to t = (t1 : · · · : t5 : 0). Moreover we consider in P4

o the intersection

So := {F2 = F3 = 0}.
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For a general X as above, So is a smooth complete intersection that is So
is a smooth K3 surface of degree 6. Actually a general K3 surface with a
degree 6 polarization is biregular to some So as above. We fix the notation

Ho ∈ |OSo(1)|

for its hyperplane sections. Finally we also consider, as usual, the section

S := X⊥ ∩G = P5⊥.

Theorems A and B, we are going to state, summarize our program for this
chapter. We want to describe A and B in many ways. To this purpose,
denoting A or B by D, we will construct a number of locally closed sets

V ⊂ C

of geometrical interest for D. V will be irreducible of the same dimension
18 and constructed so that D ∩ V contains a non empty open set of D.
Since D is closed in C, this implies V ⊂ D and that a general point of D
satisfies the geometric property defining V . In other words:
V generically coincides with D and the properties characterizing it will pro-

vide different geometric pictures of A or B, as follows.

5.4 Stating theorem A

We begin with A. In this case the key words for defining V are:

General nodal K3 surface of genus 8, rational normal quartic curve, cone in
P5 over a rational normal quartic curve. Observe that it is unique up to PGL(6)
action.

We fix the notation Vo for a non degenerate cone in P5, of vertex a point
o, over a rational normal quartic curve. Then let us fix our definitions.

Definition 5.4.1.

V a
o := {[X] ∈ C | X is a general cubic fourfold containing Vo}.

Notice that the projective tangent space at o to the cone Vo is P5. This
implies that any X containing Vo is singular at o. On the other hand, it is
very easy to produce a 1-nodal cubic fourfold X containing Vo. Therefore
V a

o is not empty. The next lemma confirms the required property of V a
o .

Lemma 5.4.2. V a
o is irreducible of dimension 18.
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Proof. Notice that Vo is unique up to projective equivalence in P5. There-
fore we can fix it and then consider its ideal sheaf I and the linear system
|I(3)|. In particular this implies that the image of the rational moduli map

m : |I(3)| → C

contains V a
o . Moreover, by the previous remarks, a general X ∈ |I(3)| is

1-nodal and hence m(X) ∈ V a
o . This implies that V a

o and the image of m
have the same closure, so that V a

o is irreducible. Now Vo is the tautological
model of P(E), where E is the rank two vector bundleOP1 ⊕OP1(4). Then
it follows that Aut Vo has dimension 9 = h0(E ⊗ E∗)− 1 + dim Aut (P1).
Moreover Vo is a cone over a smooth hyperplane section R = P4 ∩Vo and
this is a projectively normal curve. Hence Vo is projectively normal. Let
IR|P4 be its ideal sheaf in P4. Then one can compute that

h0(I(3)) = h0(IR|P4(3)) + h0(IR|P4(2)) = 28.

This implies that dimV a
o = dim|I(3)| − dim AutVo = 27− 9 = 18.

Definition 5.4.3.

V a
1 := {[X] ∈ C14 | S = L⊥ ∩G is a general, nodal linear section of G }.

Let us make precise our generality assumption on S. We assume that
Sing S = {p}, where p is a node of S. Let σ : S′ → S be the minimal
desingularization of S, consider H′ ∈ |σ∗OS(1)| and R′ = σ−1(p). Then
R′ is a −2 curve biregular to P1, OS′(H′) is a genus 8 polarization on S′

and we have H′2 = 14, R′2 = −2, H′R′ = 0. We will also assume that

Pic S′ = Z[H′]⊕Z[R′].

Now let L be an abstract lattice isometric to Pic S′ and let F8 be the moduli
space of genus 8 K3 surfaces. Then F8 contains an irreducible divisor Fn

8 ,
whose elements are the moduli points of K3 surfaces whose Picard group
contains a primitive embedding of L. It follows from Mukai theory for K3
surfaces in low genus that Fn

8 is birational to the GIT moduli spaceM of
1-nodal linear sections S of G such that Pic S′ = Z[H′]⊕Z[R′].

Definition 5.4.4.

V a
1 := {[X] ∈ C | X ∈ U and [S] ∈ M}.

Since the GIT-quotientM is birational to Fn
8 the next lemma follws.
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Lemma 5.4.5. V a
1 is irreducible of dimension 18.

On the other hand let us go back to the irreducible divisor C6. In it there
exists a non empty open set whose points [X] are defined by 1-nodal cubic
fourfolds X. Keeping the notation o for the node of X, the equation of X is

t6F2 + F3 = 0.

As we know there exists a natural birational map between C6 and F6, the
moduli space of smooth K3 surfaces which are complete intersection of a
quadric and a cubic in P4. We recall that this birational map

φ : C6 → F6

associates to a general [X] ∈ C6 the point [So] ∈ F6, where So is the smooth
complete intersection {F2 = F3 = 0}. Notice that [So] is a general point of
F6. Therefore for a general 1-nodal X we have

Pic So ∼= Z[Ho].

Notice that any surface So is the image, under the projection po : P5 → P4

of center o, of the cone F(X)o which is union of the lines of X through o.
In particular the surface So contains a rational normal quartic curve

R ⊂ So

in the special case where [X] is general in the family V a
o , parametrizing

cubic fourfolds containing a cone Vo as above.

Definition 5.4.6.

So := {[So] ∈ F6 | So is a general element containing a rational normal quartic R}.

Let [So] ∈ So be general, then So is a smooth complete intersection and

PicSo ∼= Z[Ho]⊕Z[R].

Definition 5.4.7.

V a
2 := {[X] ∈ C | X is 1-nodal and [So] ∈ So}.

Exactly as in the previous cases the next lemma follows.

Lemma 5.4.8. V a
2 is irreducible of dimension 18.

We can finally state Theorem A:
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Theorem 5.4.9 (Theorem A). The family A generically coincides with

V a
o , V a

1 , V a
2 .

More explicitely let [Y] ∈ C, then the theorem says that [Y] ∈ A iff Y is
limit of an irreducible, flat family of 1-nodal cubic fourfolds X such that

• S = X⊥ ∩G is a 1-nodal K3 surface,

• X contains a cone over a rational normal quartic curve,

• So contains a rational normal quartic,

5.5 Proving A: the rational normal quartic cone

Let [X] ∈ A be general then Theorem A follows if we prove that

[X] ∈ V a
0 ∩ V a

1 ∩ V a
2 .

Since X is general in A we can assume that X is a 1-nodal Pfaffian

X = P5 ∩D

which is singular at a point o ∈ D− Sing D. Then we have o = [a], where

a : V ×V → C

is an alternating form of rank 4. Hence Ker a defines a line in P(V) that is a
point p = [p] ∈ G, where p =

∧2 Ker a. We have seen in chapter 5 that the
tangent hyperplane to D at o is the hyperplane orthogonal to p, that is

{p}⊥ = {[b] ∈ P14 = P(
4∧

V) | p∧ b = 0}.

For any p ∈ G we know that the hyperplane section D · {p}⊥ is the set

Dp = {[b1 + b2] ∈ D | [bi] ∈ Sing D, Ker bi ∩Ker a 6= 0, i = 1, 2}.

The equality just says that Dp, in the hyperplane {p}⊥, is the secant va-
riety of the codimension 1 Schubert cycle of Ĝ, defined by the line p. We
have already described Sing Dp. This is the 5-space in D generated by the
family of points [b] such that b has rank 2 and Ker b contains Ker a:

Sing Dp = 〈{[b] ∈ D | Ker a ⊂ Ker b}〉.

Rephrasing from [Ru], let us recall that the entry locus.
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Definition 5.5.1. Let o be any smooth point of D. The entry locus is the
intersection of Ĝ with the union of the bisecant lines to Ĝ passing through
o.

Remark 5.5.2. The entry locus of o is a smooth 4-dimensional quadric
parametrizing the 3-spaces of P(V) containing the line P(ker a).

Let D be a hyperplane section of D then the following property is true.

Proposition 5.5.3. D is singular at o iff it contains the entry locus of o.

Moreover we know from chapter 5 that Dp contains a rational normal
quartic cone, uniquely defining {p}⊥ as its linear span 〈Dp〉, namely

Qp = {[b] ∈ P14 | Ker b∩ Ker a 6= 0}.

This is a cone of vertex Sing Dp over the Segre product P1×P3. Finally let
P8 = X⊥ be the orthogonal space of X in P(

∧2 V) and S = P8 ·G. From
the description in chapter 5 and Beauville-Donagi paper [BD], we have

P5 =
⋂

q∈P8

{q}⊥

and hence
X =

⋂
q∈P8

Dq.

In P8 = X⊥ let us fix 9 linearly independent points including p, say

p, q1 . . . q8.

Then their corresponding orthogonal hyperplane sections

Dp, Dq1 . . . Dq8

are defined by linearly independent vectors of H0(OD(1)) because the du-
ality pairing w :

∧2 V × ∧4 V → C is non degenerate. Of course X is
complete intersection of these and the next theorem follows.

Proposition 5.5.4. X contains a cone of vertex o over a rational normal quartic
curve. Hence So contains a rational normal quartic curve.
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Proof. It follows from the previous discussion that the mentioned quartic
cone Qp is contained in Dp and that its vertex contains o. We have

Vo := Qp · (Dq1 · · ·Dq8) = Qp ·P5 ⊂ X ⊂ P5 ⊂ {p}⊥.

Since X is general we are allowed to replace it moving P5 in {p}⊥ in an
irreducible family {P5

t , t ∈ T} so that: o is fixed, the intersection Xt =
P5

t · Qp stays 1-nodal and P5
t becomes transversal to Qp. Hence Vo is a

cone over a rational normal quartic curve and the statement follows.

Corollary 5.5.5. [X] belongs to V a
1 ∩ V a

2 .

The corollary implies two statements of theorem A, the next property
completes its proof. Starting from o let us fix six linearly independent
points o, o1 . . . o5 in P5. For their dual hyperplanes we then have

{o}⊥ ∩ {o1}⊥ ∩ · · · ∩ {o5}⊥ = P8.

Let us consider the hyperplane sections Go = G∩ {o}⊥ and

Gi = G∩ {oi}⊥, i = 1 . . . 5.

We must keep o, hence p and Go, fixed. However we can move the sections
G1 . . . G5 so that X = S⊥ ∩D stays 1-nodal at o and the intersection

S = Go · · ·G5.

is transversal at each point different from o. We can also move G1 . . . G5 so
that their intersection is a smooth threefold at p.

Proposition 5.5.6. {o}⊥ contains the projective tangent space to G at o.

Proof. Keeping our notation we have o = [a]. Fixing a basis e1 . . . e6 of
V, we can assume that the parameter point p ∈ G of the line P(ker a) is
e1 ∧ e2. Then the projective tangent space to G at p is P(e1 ∧ V + e2 ∧ V).
Hence {o}⊥ contains it, since {o}⊥ is the projectivized Kernel of the linear
form w(e1 ∧ e2, ·) :

∧4 V → ∧6 V, defined by the wedge product with
e1 ∧ e2.

The proposition implies Sing S = {p}. Then the assignment of X to S
establishes a birational map between the family of 1-nodal 4-dimensional
linear sections X of D and the irreducible family of singular K3 sections
of G. It follows that, for a general X, S is a general 1-nodal K3 surface of
genus 8 that is [S] ∈ V a

o . This completes the proof of theorem A.
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5.6 The geometric side of A: rational quartic scrolls

An attractive geometric counterpart of theorem A arises, considering the
family of rational normal quartic scrolls contained in X when [X] ∈ A. In
what follows we assume [X] general in A, not entering the many interest-
ing specializations. Even so we will see directly several geometric events
determined by the family of rational normal quartic scrolls of X.

Under our assumption and notation X is 1-nodal and S = X⊥ ·G is a
general 1-nodal K3 section. We can also assume that Sing S = {p}, with
p = [e1 ∧ e2]. Then we have Sing X = {o} where o = [a] and a is an
alternating form with Kernel generated by e1, e2. Let p′ ∈ S then p′ defines

Qp′ ⊂ D∩ {p′}⊥,

the rational normal quartic cone we have already considered, and hence

Vp′ := Qp′ ·P5 ⊂ P12 := {p, p′}⊥,

with P5 := 〈X〉. On the other the line pp′ is contained in P8 := 〈S〉 = X⊥.

Lemma 5.6.1. pp′ is not in G.

Proof. Since S = 〈S〉 ·G, it suffices to show that pp′ is not in S. Assume
pp′ is in S and consider its strict transform L′ ⊂ S′ by σ : S′ → S. Let
R′ = σ−1(o), since p ∈ σ(L′) then L′R′ = 1. Since L′ ∼ mH′ + nR′, for
some m, n ∈ Z, it follows L′R′ = −2n: a contradiction.

Let p′ = [a ∧ b], by the lemma pp′ is not parametrizing a pencil of lines
of P(V), that is e1 ∧ e2 ∧ a ∧ b 6= 0. Hence we can assume a ∧ b = e3 ∧ e4.

Lemma 5.6.2. Let H ∈ |OG(1)| be the Schubert variety defined by e1 ∧ e2 ∧
e3 ∧ e4, then S is not contained in H.

Proof. Assume S ⊂ H then a pencil |E| of quintic elliptic curves exists in S′.
More precisely the natural ruling of divisors of the Schubert cycle H pulls-
back by σ : S′ → S to a pencil |E| such that deg E = 5 and E2 = 0. We
only mention this fact, to be reconsidered later. As in the previous proof,
a simple check on Pic S′ excludes the existence of E: a contradiction.

Now we explicitly describe the cone Qp in its hyperplane {p}⊥. The
latter is the projectivization in P(

∧4 V) of the vector space having basis:

1. e1 ∧ e2 ∧ ei ∧ ej,
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2. em ∧ ei ∧ ej ∧ ek ,

for m = 1, 2 and 3 ≤ i < j < k ≤ 6 or 3 ≤ i < j ≤ 6. Notice that

{p}⊥ = P(W1 ⊕W2),

W1 being generated by the 6 vectors in (1) and W2 by the 8 vectors in (2).
Let E ⊂ V be the space generated by {e3 . . . e6}, then P(W1) is a 5-space
isomorphic to P(

∧2 E) via the map (e1 ∧ e2 ∧ ei ∧ ej) → (ei ∧ ej). We al-
ready know that Ĝ ·P(W1) is the Grassmannian of lines of P(E) and that

P(W1) = Sing Qp.

Hence the vertex o of the cone Vp = P5 · Qp is a point of P(W1) ∩ {p′}⊥,
which we always assume not in Ĝ. It is useful to recall from chapter 5 that
{o}⊥ stays unchanged when o moves in P(W1). Passing to the parametric
equations of the cone Qp in P14, and in the hyperplane {p}⊥ spanned by
it, it follows that these are provided by the following family of vectors:

λe1 ∧ e2 ∧ f + µ(a1e1 + a2e2) ∧ s,

with f ∈ ∧2 E and s ∈ ∧3 E. It is useful to describe this family explicitly:

λe12 ∧ ( f34e34 + f56e56 + f35e35 + f36e36 + f45e45 + f46e46) +

+ µ(a1e1 + a2e2) ∧ ∑
(l<m<n)∈(3<4<5<6)

slmnelmn ,

where, for our future convenience, we fix since now the notation

ei1 ∧ · · · ∧ eik := ei1...ik .

The coefficients actually define a dominant rational map

φ : P1 ×P5 ×P1 ×P3 → Qp ⊂ {p}⊥ = P13,

sending (λ : µ)× ( fij)× (a1 : a2)× (slmn) to the point of the hyperplane
{p}⊥ with assigned coordinates (xij : ylmn : zlmn) such that

xij = λ fij , ylmn = µa1slmn , zlmn = µa2slmn.

Notice that the parametric equations of Qp′ are provided in the same way
exchanging the suffixes 1 and 2 with 3 and 4. Now let us move to a further
element which stays unchanged when P5 moves in {p, p′}⊥, namely

p′ ∈ P5 ·G.
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In the variety of the 5-spaces in {pp′}⊥ which intersect P(W1) ∩ {p′}⊥ at
some point, we consider a suitable open neighborhood U of the parame-
ter point of P5 ∈ {pp′}⊥. Suitable means that, for a general u ∈ U, the
corresponding 5-space P5

u satisfies the same open properties and more of
the previous P5. The list follows after some preparation. Let P8

u = X⊥u , we
consider

Xu = P5
u ·D and Su = P8

u ·G.

The condition P5
u ⊂ {p, p′}⊥ implies that p = [e1 ∧ e2] and p′ = [e3 ∧ e4]

stay fixed when Su moves in G. Consequently o moves in P(W1) ∩ {p′}⊥
and then we can assume that o is a general point (not in Ĝ) of the family

{[e1 ∧ e2 ∧ f ] with f ∈
2∧

E and f ∧ e3 ∧ e4 = 0.}

(1) Since we have

o ∈ P(W1) ∩P5
u ⊂ P(W1) ∪P5

u ⊂ {p}⊥

it follows from the previous results that Xu is singular at o and that Su is
singular at p. Since X = Xu for some u we can assume, as in the case of X
and S, that Xu is general 1-nodal at o and that Su is general 1-nodal at p.

(2) Let σu : S′u → Su be the minimal desingularization of Su, we can also
assume that Pic Su has rank 2 and is constructed as Pic S from σ : S′ → S.

(3) Vo = P5 · Qp is a cone over a rational normal quartic curve. Since Qp

is a cone of vertex P(W1) over the Segre product P1 × P3, it follows that
P5 is a general 5-space of {pp′}⊥ which is transversal to Qp and such that
{o} = P(W1) ∩Qp. Then the same property occurs for a general P5

u.

(4) Let us continue with our point o = [e1 ∧ e2 ∧ f ] such that f ∈ ∧2 E and

f ∧ e3 ∧ e4 = 0.

As remarked the points of the Qp′ are obtained, from the the description
of the points of Qp, just exchanging the suffixes 1 and 2 with 3 and 4. This
implies that any point of the cone Qp′ is represented as follows:

λe3 ∧ e4 ∧ g + µ(a3e3 + a4e4) ∧ t,

where g ∈ ∧2 G, t ∈ ∧3 G and G ⊂ V is the space generated by e1, e2, e5, e6.

Proposition 5.6.3. The point o does not belong to Qp′ for a general u ∈ U.
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Proof. Since o is in P(W1) = Sing Qp, the condition to have o ∈ Qp′ is

[λe3 ∧ e4 ∧ g + µ(a3e3 + a4e4) ∧ t] = [e1 ∧ e2 ∧ f ].

Inspecting the vectors it follows that t = e1 ∧ e2 ∧ (a5e5 + a6e6) and that
g = e1 ∧ e2. Then o is in the following set of points of P(W1) ∩Qp′ :

[e1 ∧ e2 ∧ (λ(a3e3 + a4e4) ∧ (a5e5 + a6e6)) + µe3 ∧ e4)] ∈ P(W1).

This is a quadric cone of vertex [e1 ∧ e2 ∧ e3 ∧ e4] in the 4-space

{ f56 = 0} = {p′}⊥ ∩P(W1)

Hence a general o in this 4-space does not belong to Qp′ .

(5) The previous proof helps to easily describe the intersection

Qp′ · {p, p′}⊥.

Since Qp′ ⊂ {p′}⊥, we have only to determine Qp′ ∩ {p}⊥. As observed
the parametric equations of Qp′ are obtained from those of Qp exchanging
1, 2 and 3, 4. Hence Qp′ is the projectivizated set of vectors

[λe34 ∧ (g12e12 + g56e56 + g15e15 + g16e16 + g25e25 + g26e26) + µ(a3e3 + a4e4)

∧ ∑
(l<m<n)∈(1<2<5<6)

tlmnelmn ] = [λe3 ∧ e4 ∧ g + µ(a3e3 + a4e4) ∧ t].

For µ = 0 we obtain the 5-space Sing Qp′ = P(
∧2 G). For λ = 0 we obtain

the product P1 × P3 with coordinates (a3 : a4) × (t124 : t125 : t145 : t245).
Now, working exactly as above we obtain, after the exchange of suffixes,
that

Sing Qp′ ∩ {p}⊥ = {g56 = µ = 0}
in other words we obtain the set of points

{[e34 ∧ (g12e12 + g15e15 + g16e16 + g25e25 + g26e26)]}.

Then the next property easily follows, we omit further details.

Proposition 5.6.4. Qp′ · {pp′}⊥ is a cone over P1 × P3 whose vertex is the
linear space Sing Qp′ ∩ {p}⊥.
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Definition 5.6.5. For the above section of Qp′ we define

Qp′ · {pp′}⊥ := Q
p
p′ .

The definition works for any pair (p, p′) ∈ G× G such that p 6= p′.
Now we start to profit of the previous effective description to deduce some
useful properties of the family {Xu, u ∈ U}. At first we point out that
Q

p
p′ is a quartic cone in P12 = {pp′}⊥ over a smooth variety with singular

locus the 4-space Sing Qp′ ∩ {p}⊥. By the previous results we can assume
that o is not in Qp′ and keep it fixed moving P5

u in P12 = {pp′}⊥. P5
u is

indeed a general 5-space through o. By dimension count it is disjoint from
Sing Q

p
p′ and it is transversal to Q

p
p′ by Bertini theorem. This implies the

next property.

Proposition 5.6.6. Qp
p′ · P

5
u is a smooth rational quartic scroll for a general u,

which is not passing through o.

(6) Finally we go back to the family of quartic scrolls {Vp′ p′ ∈ S}we have
already considered. Since we move P5 in a family {P5

u, u ∈ U}, we will
also consider the induced families of scrolls

{Vp′(u), p′ ∈ Su},

parametrized by the family of surfaces Su, which are 1-nodal K3 sections
of G at o = o(u) ∈ Sing Qp, for a general u ∈ U. It is the moment to
summarize some well known properties of any smooth quartic scroll

V ⊂ P5.

Proposition 5.6.7. V is projectively normal and its ideal is generated by quadrics.

V is a very well known and interesting surface, specially from the point
of view of the variety of its bisecant lines. Indeed V is one of the two pos-
sible cases of smooth OADP surfaces, see [CR]. This means that, through
a general point x ∈ P5, a unique bisecant line to V is passing.

Definition 5.6.8. Let x ∈ P5, we say that x is in general position with V if a
unique bisecant line to V is passing through x.

In the opposite case it is well known that then x is in a plane containing
a conic of V, cfr. [CR]. Let L be a bisecant line to V, not contained in V.
Notice also that, since V is generated by quadrics, the intersection scheme

ζ = L ·V
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has length 2. We are in the position to claim that:

Every bisecant line to V, not contained in V, is exactly bisecant to V.

Lemma 5.6.9. o is in general position with respect to Vp′(u) for a general u ∈ U.

Proof. We know from the study of Pic So that no line is in So. Assume
o is not in general position with respect to Vp′ . Then o is in a plane Π
containing a conic C of Vp. Since o is not in Vp′ , Π contains two conics
with no common components: C and a conic singular at o. Hence Π is
in the cone F(X)o = {F2 = F3 = 0} and its projection πo(Π) is a line in
So: a contradiction. This shows the statement for X. Since the condition
of being in general position is open, the same follows for Xu, u general in
U.

(7) We add to our usual notation the following: if o is in general position
with Vp′ then `p′ is exactly the unique exactly bisecant line to Vp′ and

ζp′ = `p′ ·Vp′ .

Then ζp′ is a scheme of length two, consisting either of two distinct points
or of one subscheme of multiplicity two in `p′ . We fix since now the pro-
jection

πo : P5 → P4

and denote as usual the equation of X as t6F2 + F3 so that

F(X)o = {F2 = F3 = 0}

is the cone over the K3 surface So = πo(F(X)o). We fix the notation

Q2 = πo({F2 = 0}) ⊂ P4 , Q3 = πo({F3 = 0}) ⊂ P4

so that So = Q2 ∩Q3. The next lemma follows from Bèzout theorem.

Lemma 5.6.10. `p is contained in the cubic fourfold X.

Let us also define the following curve for a general p′ ∈ S:

Definition 5.6.11. The hyperelliptic curve associated to p′ is

B̂p′ := {F2 = 0} ·Vp′ .

B̂p′ is a curve: F2 cannot vanish on Vp′ . Otherwise πo(Vp′) would be a
component of So: a contradiction. B̂p′ is cut on Vp′ by the quadratic projec-
tive tangent cone of X at o: independently from the choice of coordinates.
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Lemma 5.6.12. B̂p′ is hyperelliptic of arithmetic genus pa(B̂p′) = 3 and degree
8.

Proof. Computing deg(B̂p′) and pa(B̂p′) in Vp′ is standard. Since B̂p′ is a
quadratic section, the unique ruling of lines |F| of Vp′ of Vp′ defines a line
bundle OB̂p′

(F) on B̂p′ and a finite map of degree two f : B̂p′ → P1.

The projection πo restricts to a morphism

πo : B̂p′ → So ⊂ P4.

This follows because B̂p′ is contained in {F2 = 0} by definition and we also
have B̂p′ ⊂ Vp′ ⊂ X = {t6F2 + F3 = 0}. This implies πo∗B̂o ⊂ Q2 ∩ Q3 =
So.

Definition 5.6.13. The quasi hyperelliptic curve of p′ is Bp′ = πo∗B̂p′ .

We will say that a curve is quasi hyperelliptic at a regular point t if a
partial normalization at t is hyperelliptic. Now we want to point out that

B̂p′ · `p′ = ζp′ ,

where `p′ is the unique exactly bisecant line to Vp′ from o. This follows
because, as a line of X through o, `p′ is contained in {F2 = 0}. Hence
πo|B̂p′ contracts exactly ζp′ ⊂ B̂p′ . For the rest the map is biregular, since
the same is true for πo|Vp′ . This implies the next lemma.

Lemma 5.6.14. Bp′ is quasi hyperelliptic of arithmetic genus 4 and degree 8.

Let us now introduce some important properties of the linear system
of genus four curves defined by the curve Bp′ on So, let us denote it

|B|.

Lemma 5.6.15. |B| = |2Ho − Ro|.

Proof. Let λ : P5 → P3 be the projection from the bisecant line `p′ of Vp′ .
Since `p′ ·Vp′ has length 2 then λ(Vp′) is an integral quadric surface. Hence
Its inverse image by λ is a quadric hypersurface Q̂ ⊂ P5. Q̂ is singular
along `p′ and contains Vp′ . Then it follows that Q = πo(Q̂) is a quadric
containing Bp′ and not So. This implies that |2Ho − Bp′ | contains an effec-
tive curve R such that HoR = 4 and R2 = −2. Since R ∼ xHo + yRo one
computes that then x = 0, y = 1 so that R = Ro.
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Lemma 5.6.16.

(1) Every element of |B| is an integral curve.

(1) |B| is not a hyperelliptic linear system.

Proof.

(1) Assume B ∈ |2Ho − Ro| is not integral and properly contains an in-
tegral D, then D ∼ xHo + yRo so that 0 < HoD = 6x + 4y < 8 and
RoD = 4x− 2y. This implies 0 < 7x < 4 so that x is not an integer.

(2) Assume |B| is hyperelliptic. As it is well known then So contains a
pencil |E| of elliptic curves such that EB = 2, [Huy1]. But then E2 =
0 and Pic So contains an isotropic vector, which is readily excluded
by computing in Pic So.

Theorem 5.6.17. For each t ∈ So there exists exactly one Bt ∈ |B| such that t is
an ordinary double point of Bt and Bt is quasi hyperelliptic at t.

Proof. Let us consider the point z = πo(ζp′) and its ideal sheaf Iz in So.
Since |B| is not hyperelliptic it follows that |Iz(B)| has a unique and simple
base point, which is z. Since dim |B| = 4, |Iz(B)| defines a rational map

φz : So → P3.

Since z is simple and B2 = 6 then φz is birational onto its image and this
is an integral quintic surface Sz = φz(So). Moreover, a general B ∈ |Iz(B)|
is smooth of genus 4 and φz(B) is a general plane section of Sz. Then this
curve, as an integral plane quintic of geometric genus 4, has no singular
point of multiplicity ≥ 3 and only double points: two distinct ordinary
nodes or cusps or a tacnode counting for two. This implies that Sing Sz
is a curve of degree 2. Assume Sing Sz is a conic and let Π ⊂ P3 be its
plane, then Π · Sz = 2 Sing Sz + E, where E is a line. Precisely φz factors
as φz = φ′ ◦ σ−1, where σ : S′o → So is the blowing up of So at z and φ′

is a morphism. Then E is the image by φ′ of the exceptional line Ez :=
σ−1(z). Now let us consider the pull-back of Π by φz. This is a curve
Bz ∈ |B|. Since Bz is integral then Sing Sz is a smooth conic. Also, Bz is
hyperelliptic because φz : Bz → Sing Sz has degree two. It also follows that
the multiplicity of Bz at z is two. This implies the existence and uniqueness
of Bz, when Sing Sz is a conic. Otherwise Sing Sz is union of two disjoint
double lines of Sz. But then the pencil of planes through any of these lines
cuts on Sz a pencil of plane cubics. This lifts by φz to an elliptic pencil on
So: a contradiction.
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Using the latter theorem and the preceeding results we finally define
our favourite rational map.

Definition 5.6.18. Let p′ ∈ S then f : S→ So is the rational map such that

f (p′) = z := πo(ζp′).

For the moment f is just some rational map, the next theorem makes
clear what happens and completes the picture of the geometric side of A.

Theorem 5.6.19. f lifts to a biregular map f ′ : S′ → So moreover one has

σ∗OS(1) ∼= OSo(Ho + 2Ro).

Proof. Let us consider as usual a general p′ ∈ S and z = f (p′). To show
that f is birational it suffices to reconstruct the quartic scroll Vp′ , and hence
p′, from z. Recall that z = πo(ζp′) and that Bp′ = πo∗B̂p′ passes through z,
where B̂p′ = Vp′ · {F2 = 0}. We know that Bp′ ∈ |B| is quasi hyperelliptic
at its singular point z. By the previous theorem these properties charac-
terize a unique curve Bz ∈ |Iz(B)|, described in its proof. Hence we have
Bp′ = Bz and Bp′ is uniquely defined just starting from the point z. Then
the reconstruction of Vp′ from such a curve is not difficult. At first we re-
construct πo(Vp′): let ι : Bz → Bz be the birational hyperelliptic involution
of Bz. In fact πo(Vp′) is equal to the union of lines defined as

Vz :=
⋃

y∈Bz

yι(y).

Then Vp′ is reconstructed as the image of Vz via π−1
o : P4 → X. Hence the

construction defines a rational section g : So → S of f , which is sending a
general z ∈ So to p′. Since S and So are irreducible of the same dimension
then g and f are inverse one to the other, hence f , g are birational. Passing
to the minimal desingularization S′ of S the birational map f lifts to a
biregular map f ′ : S′ → So by Castelnuovo theorem. To complete the proof
note that Pic Si has a unique effective class of degree 14. Since Ho + 2Ro
defines an effective class of degree 14, then σ∗OS(1) ∼= OSo(Ho + 2Ro).

5.7 Rationality of A
As we saw,A is birational to the moduli space of K3 of degree 6 containing
a rational normal quartic curve. Since a general such K3 contains only one
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rational normal quartic, then a birational model ofA is, for a fixed rational
normal quartic C, is

FC = {[S] ∈ F4|S ⊃ C}.
Let QC be the Hilbert scheme of quadric threefolds containg C and SC be
the Hilbert scheme of K3 surfaces of degree 6 containing C. Then there is
a natural map

π : SC → QC,

which associates a K3 surface S to the unique quadric hypersurface con-
taining it. π−1(Q) is naturally identified with P(H0(IC/Q(3))) ∼= P16, so
SC is indeed a sub-bundle of the projectivized anti-canonical bundle over
QC. The map π is compatible with the action of Aut(C) and the stabilizer
in Aut(C) of the general Q ∈ QC is trivial. It follows that π descends to a
P16-bundle

π̄ : SC → QC.

QC is unirational and 2-dimensional so, by Castelnuovo theorem, is ratio-
nal. The rationality of SC follows immediately.

5.8 Stating theorem B

In this case the key words for defining V are:

elliptic K3 surfaces of genus 4 and 8 , cone in P5 over a quintic elliptic curve.

Let us fix a point o ∈ Ĝ ⊂ D, L ⊂ P14 a 5-dimensional projective subspace
containing o, X = D∩ L. We can finally state Theorem B:

Theorem 5.8.1 (Theorem B). A general X ∈ B has the following properties:

1. S = X⊥ ∩G contains a 1-dimensional family of quintic elliptic curves;

2. So contains a pencil of quintic elliptic curves;

3. X contains a pencil family of cones over a quintic elliptic curve.

5.9 Proving theorem B

Proof of B.1.
Write o := [v1 ∧ v2 ∧ v3 ∧ v4] and Vo := Span({v1, . . . , v4}).
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Let H ⊂ V be a hyperplane containing Vo. Then G(2, H)∩S = G(2, H)∩
L⊥ is a divisor of S: in fact both L⊥ and G(2, H) are contained in the hy-
perplane o⊥, so dim(G(2, H) ∩ L⊥) = dim(G(2, H)) − codimo⊥(L⊥) =
6− 5 = 1 for a general choice of L.

DH := G(2, H) ∩ L⊥ is in a general smooth and irreducibe divisor.
Note that two general distinct DH1 , DH2 are disjoint, since G(2, H1)∩G(2, H2) =
G(2, Vo), which has dimension 4. They are cohomologically equivalent
(they correspond to the same Schubert cycle), so D2

H = 0 in Pic(S). This
implies that DH is smooth of genus 1. Since deg(G(2, 5)) = 5, it follows
that deg(DH) = 5. �

Before proving B.2 let us introduce some preliminaries results.

Lemma 5.9.1.

(1) Let L ⊂ Ĝ be a 4-dimensional linear subspace of P(
∧2 V). Denote by πL

the projection from the subspace K. Then

πL(Ĝ) ∼= G(2, 5).

(2)
πToG(G) ∼= G(2, 4).

Proof.

(1) The 4-dimensional projective subspaces contained in G are all of the
form

Lp = {` ∈ G : p ∈ `},
where p ∈ P(V).

We can assume, without loss of generality, that V = C6, p = [e1]. In
this case

Lp = P(Span(e1 ∧ e2, ..., e1 ∧ e6)).

πLp is identified with the quotient map

P(
2∧

V)→ P(
2∧
(V/〈e1〉)),

which maps G = G(2, V) to G(2, V/〈e1〉).

(2) Assuming that V = C6 and o = e1 ∧ e2, we have that

ToG = P(Span({e1 ∧ ei, e2 ∧ ej} 2≤i≤6
3≤j≤6

)).
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So πToG is actually the natural projection map

P(
2∧

V)→ P(
2∧
(V/〈e1, e2〉)),

which maps G = G(2, V) to G(2, V/〈e1, e2〉).

Before stating the next result, we recall the notion of join.

Definition 5.9.2. Let Y, Z ⊂ Pn two embedded projective varieties. The
join of Y and Z, denoted J(Y, Z), is the variety⋃

y∈Y,z∈Z
`y,z.

Corollary 5.9.3.

(1) Let L ⊂ P(
∧2 V) be a 4-dimensional linear subspace contained in G.

Then J(L, G) is a cone of vertex L over G(2, 5). In particular J(L, G) is 11-
dimensional and of degree 5.

(2) CoD̂ = J(ToG, G). Then it is a cone of vertex ToG over G(2, 4).

Proof.

(1) In fact J(L, G) = π−1
L (πL(G)) = π−1

L (G(2, 5)).

(2) It is sufficient to prove the inclusion⊇, since both of them are quadric
hypersurfaces. Note that ToG = Sing(CoD̂) and G ⊂ CoD̂. In par-
ticular the line joining a point of ToG and a point of D̂ is contained
in CoD̂. This proves the equality. The other statement follows from
the chain of equalities:

J(ToG, G) = π−1
ToG

(πToG
(G)) = π−1

ToG
(G(2, 4)).

Corollary 5.9.4. Denote by `o ⊂ P(V) the straight line representing o. Then

CoD̂∩ D̂ =
⋃
p∈`o

J(Lp, G) = J(ToG∩G, G).
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Proof. The second equality is obvious from the definition. Since D̂ =

J(G, G) by definition and CoD̂ = J(ToG, G) by the previous result, the in-
clusion CoD̂∩ D̂ ⊇ J(ToG∩G) is clear. Since the left side is 12-dimensional
and irreducible and the right side is 12-dimensional (being the union of a
pencil of 11-dimensional cones), the equality follows.

Recall that the K3 surface (of degree 6) associated to a cubic fourfold X
singular in x ∈ X is πx(X ∩ CxX), where πx denotes the projection from x.

In our case, if L is a general 5-dimensional projective space passing
through o and X = D̂∩ L, the associated K3 surface is πo(D̂∩ CoD̂∩ L).

Proof of B.2 and B.3. Let L be a general 5-dimensional projective space
passing through o. If L is general, then L ∩ ToG = {o}. It follows that
L ∩ CoD̂ is a cone of vertex o over a quintic curve of P4, which is smooth
for the assumption of generality on L. This proves B.3. Recall that
So = πo(D̂ ∩ L ∩ CoD̂). In particular So contains the pencil of quintic
elliptic curves {πo(J(Lp, G) ∩ L)}p ∈ `o. �

The K3 surfaces So and X⊥ ∩G are indeed isomorphic, as explained by
the next result.

Proposition 5.9.5. Every elliptic K3 surface of degree 6 (14) containing a family
of quintic elliptic curves admits a primitive polarization of degree 14 (6). Also
this polarization contains a family of quintic elliptic curves.

Proof. Suppose that deg(S) = 14. Let h be the cohomology class of the hy-
perplane section, c the class of the quintic curve. The following equalities
hold:

h2 = 14, h · c = 5, c2 = 0.

Define l := 3h − 4c. Then l2 = 6, so l gives a primitive polarization of
degree 6. Define γ := 5h− 7c, then

γ2 = 0, γ · l = 5.

So the curves whose cohomology class is γ are elliptic of degree 5 in the

polarization induced by l. Since the matrix
(

3 −4
5 −7

)
∈ GL2(Z), then also

the inverse statement holds.



Chapter 6

The universal K3 of genus 8 is rational

In this chapter we describe the proof of the rationality of F8,1 in [DiT].

6.1 F8,1 as P16-bundle over Pic3,2

Denote by

C̃14 := {(X, R) : X ∈ |OP5(3)|, R ⊂ X is a quartic scroll}// PGL(6)

the incidence variety of quartic scrolls and smooth cubic fourfolds. This
variety is birational to F8,1. So proving the rationality of the universal K3
of genus 8 is equivalent to prove the rationality of C̃14 The main idea of the
proof is to show that C̃14 has a structure of projective bundle over Pic3,2.
Here we use the notation Picd,g to denote the universal Picard variety of
line bundles of degree d over a curve of genus g. In what follows this is the
coarse moduli space of pairs (C,L) such that C is a smooth integral curve
of genus g and L ∈ Picd(C), see [HM] for the main general properties and
definitions. In our case a birationally equivalent construction of it as a GIT
quotient can be provided as follows. Observe that a pair (C,L), defining
a general point of Pic3,2, provides an embedding

C ↪→ P1 ×P1

as a curve of type (3, 2) such that L ∼= OC(0, 1) and ωC
∼= OC(1, 0). Then

a birationally equivalent model of Pic3,2 is the GIT quotient∣∣OP1×P1(3, 2)
∣∣ // Aut(P1)2

Let R ⊂ P5 be a quartic scroll. The moduli space C̃14 is also described as a
quotient CR/GR where

CR := {X ∈ |OP5(3)| s.t. X ⊃ R} and GR := { f ∈ PGL(5) s.t. f (R) = R}

83
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This is clear since every general smooth quartic scroll can be moved to
a fixed one by an automorphism of P5 . The first step is to construct a
projective bundle

CR →
∣∣OP1×P1(3, 2)

∣∣
We recall that a Segre product is the embedding of Pa ×Pb defined by the
line bundle OP1×P2(1, 1), up to projective automorphisms. The degree of
this embedding is (a+b

a ). Clearly a Segre product of degree 3 is P1 × P2

embedded in P5. For convenience in the exposition we will say that

Definition 6.1.1. A cubic Segre product is an embedding P1 × P2 ↪→ P5

as above.

Note that |OP1×P2(1, 0)| is the pencil of respectively disjoint planes

{x} ×P2, x ∈ P1.

On the other hand the elements of |OP1×P2(0, 1)| are smooth quadric sur-
faces, namely products P1 × L with L ∈ OP2(1). We are interested in
isomorphic copies of smooth quadric surfaces of degree 4 in P1 ×P2. To
this purpose let us point out that the surfaces of degree 4 in P1 × P2 are
distributed in two linear systems:

• |OP1×P2(0, 2)|;

•
∣∣OP1×P2(2, 1)

∣∣.
The next propositions describe smooth quartic scrolls from these linear
systems. We fix the usual notation Fn for the P1-bundle over P1 with
minimal section e of self intersection −n. We denote the fibre of Fn → P1

by f . As is well known Fn is a Hirzebruch surface. We are interested to
F0 = P1 × P1 and to F2 which is a rank 3 quadric cone blown up at its
vertex.

Proposition 6.1.2. Let R ∈
∣∣OP1×P2(0, 2)

∣∣ be a smooth and irreducible divisor.
Then R ∼= F0 and

OR(1, 0) ∼= OR(e), OR(0, 1) ∼= OR(2 f ).

Moreover a unique cubic Segre product contains R as an element of |OP1×P2(0, 2)|.

Proof. Let p2 : P1 × P2 → P2 the second projection map. Since |R| =
p∗2 |OP2(2)|, then R = P1 × B, where B ⊂ P2 is a smooth conic. More-
over P1 ×P2 is the union of the planes {x} ×P2, x ∈ P1, and {x} ×P2 is
spanned by the conic {x} × B ⊂ R. Hence P1 ×P2 is uniquely associated
to R.
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Proposition 6.1.3. Let R ∈
∣∣OP1×P2(2, 1)

∣∣ be a smooth and irreducible divisor.
Then R is Fn with n ∈ {0, 2} and

OR(1, 0) ∼= OR( f ), OR(0, 1) ∼= OR

(
n + 2

2
f + e

)
.

The family of cubic Segre products containing R as an element of |OP1×P2(2, 1)|
is naturally parametrized by an open set of |OR(0, 1)|∗.

Proof. We have that p2|R : R → P2 is a generically finite morphism of
degree 2. Fixing bi-homogeneous coordinates [Z0 : Z1] × [X0 : X1 : X2]
on P1 ×P2, the equation of R is aZ2

0 + bZ0Z1 + cZ2
1 = 0, where a, b, c are

linear forms in [X0 : X1 : X2]. Since R is smooth, then the branch curve B
of p2|R is a conic of rank ≥ 2. If B is smooth then p2|R is finite and R ∼= F0.
If B has rank 2, then R is the blowing up of a quadric cone in its singular
point, so it is F2. Now observe that V1 := p1|∗R H0(OP1(1)) = H0(OR( f ))
and that L := p2|∗ROP2(1) is the line bundle defining the model of R as a
quadric surface. in particular V2 := p2|∗R H0(OP2(1)) has codimension 1 in
H0(L). Finally consider

H0(OP1×P2(1, 0))⊗H0(OP1×P2(0, 1)) V1 ⊗V2 H0(OR(1))
r m

where r is the restriction and m is the multiplication map. It is stan-
dard to check that both r and m are isomorphisms. This implies that V2
uniquely reconstructs P1×P2 and that the family of cubic Segre products
containing R as an element of |OP1×P2(2, 1)| is birationally parametrized
by |OR(0, 1)|∗.

Let R be a smooth quartic scroll, that is a Hirzebruch surface Fn with
n ∈ {0, 2}. Keeping in account the previous propositions and their proofs,
it is easy to associate to R a union of planes T containing R as follows.
Consider the pencil

∣∣ f + n
2 e
∣∣ and the union of planes

T :=
⋃

c∈| f+ n
2 e|

Tc

where Tc is the plane spanned by c. Notice that c is a smooth conic if n = 0
and the rank 2 conic e + f ′, f ′ ∈ | f | if n = 2.

Theorem 6.1.4. R is in a unique cubic Segre product if n = 0 and in a unique
cone of vertex e over a rational normal cubic if n = 2.

In what follows it will be enough to assume n = 0. We have a chain of
embeddings
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P1 ×P1 P1 ×P2 P5

(
id

P1 0
0 |O(2)|

)
|O(1, 1)|

Let F ∈ H0 (OP1×P2(0, 2)
)

be the defining polynomial of R in T. Then the
restriction map

π : H0 (OP5(3))→ H0 (OP1×P2(3, 3)
)

has the property that π(H0(IR(3))) = f ·H0(OP1×P2(3, 1)). The restric-
tion

H0(OP1×P2(3, 1))→ H0(OP1×P1(3, 2))

is an isomorphism of vector spaces. Consequently there is an induced
homomorphism

H0(IR(3))→ H0(OP1×P1(3, 2))

which induces a linear projection.

CR →
∣∣OP1×P1(3, 2)

∣∣
We want this map to descend to a P16-bundle

C̃14 → Pic3,2

Recall some general fact about GIT.

Definition 6.1.5. Let X be and algebraic variety, let G be a reductive alge-
braic group acting on X and let F be a coherent sheaf on the semistable
locus Xss. Then F is said to descend to X//G if there is a coherent sheaf
F on X//G whose pullback under the quotient map Xss → X//G is the
original sheaf F .

If F is a vector bundle the following result gives a criteria for descent:

Theorem 6.1.6 (Kempf). Let X be a quasi-projective scheme over an algebraically
closed field κ of characteristic zero, and let G be a reductive algebraic group de-
fined over κ which acts on X with a fixed choice of linearization H. Let E be a
G-vector bundle on Xss. Then E descends to X//G if and only if for every closed
point x of Xss such that the orbit G · x is closed in Xss, the stabilizer of x in G
acts trivially on the fiber Ex of E at x.

Proof. See [DN].

Recall also a standard result ([Har2, 12.9]):
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Theorem 6.1.7 (Grauert). Let f : X → Y be a projective morphism of noethe-
rian schemes, and letF be a coherent sheaf on X, flat over Y. Suppose furthermore
that Y is integral and that for some i, the function hi(Xy,Fy) is constant on Y.
Then RiF is locally free on Y and the natural map

Ri f∗(F )⊗ k(y)→ Hi(Xy,Fy)

is an isomorphism.

The Kempf and Grauert theorems are the key ingredients in the proof
of the next proposition. A similar argument was used by Shepherd-Barron
in [She, 6] to prove the rationality ofM6.

Proposition 6.1.8. C̃14 is birational to P16 ×P3,2.

Proof. The rational map

CR → |OP1×P1(3, 2)|

is a linear projection
π : P(V)→ P(V′)

where V := H0(IR(3)), V′ := H0(OP1×P1(3, 2)). Let α : P̃ → P(V)
be the blow-up a of the base locus of the projection and π̃ := α ◦ π. Let
L := α∗OP(V)(1). We have that PGL(2)2 acts freely on a open subvariety
of P(V′), so L is PGL(2)2-linearized. It follows from Kempf theorem that
it descends to a line bundle on P(V)// PGL(2)2. Furthermore it restricts
to O(1) on the fibers of the map

P̃→ P(V′).

From Grauert theorem we have that π̃∗L is locally free on P(V′) and the
projective fibration α is isomorphic to P(π̃∗L). It follows that α is a projec-
tive bundle.

6.2 Rationality of Pic3,2

We show that the projectivization of the pull-back on Pic3,2 of the Hodge
bundle overM2 is a rational variety. It follows that Pic3,2×P1 is rational.
Then a fortiori also C̃14 is rational. Recall thatMg is endowed with a sheaf
named Hodge bundle. Over a suitable non empty open set the Hodge bun-
dle is a rank g vector bundle Λg with fibre H0(ωC) at the moduli point of
C, see e.g. [Loo1] or [HM].
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Definition 6.2.1. The Hodge bundle over Pic3,2 is the rank-2 vector bundle

Λ3,2 → Pic3,2

defined as the pullback of Λ2 →M2 under the natural map Pic3,2 →M2

Let Kg be the projectivization of Λg. Then Kg fits in the general theory
of moduli of abelian differentials, see [FP]. Indeed an open set of it is the
coarse moduli space of couples (C, K) such that C is a smooth, connected
genus g curve and K is a smooth canonical divisor of C.

Definition 6.2.2. We denote by K3,2 the pull-back of K2 through the natu-
ral map Pic3,2 →M2.

In particular it follows that K3,2 represents the coarse moduli space of
triples (C,L, K). Let us consider the projection map

p : K3,2 → Pic3,2

then p is a P1-bundle over an open set of Pic3,2. Its fibre over the moduli
point of (C,L) in Pic3,2 is |ωC|. Now it is not difficult to construct a family
of triples (C,L, K) dominating K3,2 via the moduli map.

For a general triple (C,L, K) we can assume that L is globally gener-
ated and that K consists of two distinct points K = o1 + o2 with o1 6= o2.
Let p : C → P1 and q := C → P1 be the morphisms respectively defined
by ωC and L. Then p× q defines an embedding

C ⊂ P1 ×P1

with two marked points, that are the images of o1 and o2. With some abuse
of notation, we still denote them by o1, o2. In particular C is a smooth
element of the linear system |OP1×P1(3, 2)| and contains {o1, o2}. et I be
the ideal sheaf of {o1, o2} in P1 ×P1 and let

|I(3, 2)| K3,2

C (C,OC(0, 1), o1 + o2)

m

be the natural moduli map. Since (C,L, K) defines a general point of K3,2
the next property is immediate.

Proposition 6.2.3. m : |I(3, 2)| 99K K3,2 is dominant.

The following result gives a more concrete description of K3,2.
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Proposition 6.2.4. Let m : |I(3, 2)| 99K K3,2 be as above. Then

m(C) = m(C′)⇐⇒ ∃σ ∈ StabPGL(2)2({o1, o2}) s.t. σ(C) = C′

Proof. The isomorphisms σ : C → C′ which are restrictions of an element
of Aut(P1)

2 are determined by the conditions

σ∗OC′(1, 0) = OC(1, 0), σ∗OC′(0, 1) = σ∗OC(0, 1)

Imposing that σ∗(o1 + o2) = o1 + o2 means exactly that σ ∈ StabPGL(2)2({o1, o2}).

Observation 6.2.5. Since it is possible to move any {o1, o2} ⊂ D ∈ |OP1×P1(1, 0)|
to {([1 : 0], [1 : 0]), ([1 : 0], [0 : 1])} through an element of PGL(2)2, K3,2
can be described as the quotient of

{C ∈
∣∣OP1×P1(3, 2)

∣∣ : ([1 : 0], [0 : 1]), ([1 : 0], [1 : 0]) ∈ C}

modulo the equivalence relation

C ∼ C′

⇐⇒
∃σ = (σ1, σ2) : σ(C) = C, σ1([1 : 0]) = [1 : 0],

σ2({[1 : 0], [0 : 1]}) = {[1 : 0], [0 : 1]}

We use the characterization of Observation 6.2.5 to prove its rationality
using an argument of classical GIT.

Proposition 6.2.6. K3,2 is birational to P6.

Proof. From Observation 6.2.5 K3,2 can be described as the GIT quotient
set of (3, 2)-divisors

C011X3
0Y0Y1 + X2

0X1(C120Y2
0 + C111Y0Y1 + C102Y2

1 )+
+X0X2

1(C220Y2
0 + C211Y0Y1 + C202Y2

1 )+
+X3

1(C320Y2
0 + C311Y0Y1 + C302Y2

1 ) = 0 : Cijk ∈ C


modulo the action of the group G ⊂ PGL(2)2 defined by

G := Stab({o1, o2}) =
{([

∗ ∗
0 ∗

]
,
[
∗ 0
0 ∗

])}
∪
{([

∗ ∗
0 ∗

]
,
[

0 ∗
∗ 0

])}
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where o1 := ([1 : 0], [1 : 0]), o2 := ([1 : 0], [0 : 1]). For a general ele-
ment of this set we have that C011 6= 0. It follows that in the G-orbit of a
general element there is an element with C111 = 0: just apply the transfor-
mation X0 7→ X0 +

C111
3C011

X1. Note that if two elements with C111 = 0 are
in the same G-orbit, then they are necessarily connected by an element of
G′ ≤ G, where

G′ :=
{([

∗ 0
0 ∗

]
,
[
∗ 0
0 ∗

])}
∪
{([

∗ 0
0 ∗

]
,
[

0 ∗
∗ 0

])}
and vice versa G′ acts on set of polynomials with C111 = 0. So another
birational model of K3,2 is the GIT quotient

C011X3
0Y0Y1 + X2

0X1(C120Y2
0 + C102Y2

1 )+
+X0X2

1(C220Y2
0 + C211Y0Y1 + C202Y2

1 )+
+X3

1(C320Y2
0 + C311Y0Y1 + C302Y2

1 ) = 0


//

G′

The same space can be described as the GIT quotient
C011Y0Y1 + x(C120Y2

0 + C102Y2
1 )+

+x2(C220Y2
0 + C211Y0Y1 + C202Y2

1 )+
+x3(C320Y2

0 + C311Y0Y1 + C302Y2
1 )


//

H

where H := C∗3 o (Z/2Z). H acts in the following way:

• C∗3 acts by multiplying the variables x, Y0, Y1 by costants, more pre-
cisely:

(a, b, c) · (Cijk) = (aibjckCijk);

• Z/2Z inverts the variables Y0 and Y1, more precisely

(1 mod 2) · (Cijk) = Cikj.

We find now 6 invariants which completely determine the GIT quotient of
the dense open subset{

C011 6= 0, C120 6= 0, C102 6= 0, C220 6= 0, C211 6= 0,
C202 6= 0, C320 6= 0, C311 6= 0, C302 6= 0

}//
H

then giving a birational map to C6. We first compute the invariants for the
action of C∗3, then we recover the invariants for the action of H. We use
that

X//G ∼= (X//N)//(G/N)
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in our case G = H, N = C∗3, G/N = Z/2Z. The action of C∗3 is uniquely
determined by the following invariants

(I1, J2, J3, I4, I5, I6)

=(
C120C102

C211C011
,

C011C311

C220C102
,

C302C011

C211C102
,

C220C202

C2
211

,
C320C302

C2
311

,
C3

211
C2

311C011

)

It is immediate that they are invariants, we need to check that they uniquely
determine an isomorphism class. Suppose that two polynomials (identi-
fied with elements of C∗9)
(C011, C120, C102, C220, C211, C202, C320, C311, C302) and
(C′011, C′120, C′102, C′220, C′211, C′202, C′320, C′311, C′302) have the property that

(I1, J2, J3, I4, I5, I6) = (I′1, J′2, J′3, I′4, I′5, I′6) (6.1)

Acting by C∗3 on both of them it is possible to make

C211 = C′211 = 1, C311 = C′311 = 1, C102 = C′102 = 1 (6.2)

in fact it is just needed to choose two triples (a, b, c) and (a′, b′, c′) such that
a2bc = C−1

211
a3bc = C−1

311
ac2 = C−1

102


a′2b′c′ = C′−1

211
a′3b′c′ = C′−1

311
a′c′2 = C′−1

102

If the equalities 6.1 and 6.2 hold, then Cijjk = C′ijk, in fact:

1. I6 = I′6 ⇐⇒
C3

211
C2

311C011
=

C′3211
C′231C′011

⇒ C011 = C′011;

2. J2 = J′2 ⇐⇒
C011C311

C220C102
=

C′011C′311
C′220C′102

⇒ C220 = C′220;

3. I4 = I′4 ⇐⇒
C220C202

C2
211

=
C′220C′202

C′2211
⇒ C202 = C′202;

4. I1 = I′1 ⇐⇒
C120C102

C211C011
=

C′120C′102
C′211C′011

⇒ C120 = C′120;

5. J3 = J′3 ⇐⇒
C302C011

C211C102
=

C′302C′011
C′211C′102

⇒ C302 = C′320;



CHAPTER 6. THE UNIVERSAL K3 OF GENUS 8 IS RATIONAL 92

6. I5 = I′5 ⇐⇒
C320C302

C2
311

=
C′320C′302

C′2311
⇒ C320 = C′320.

Note that the invariants J2, J3 are not invariant for the action of Z/2Z. In
fact let ι be the involution exchanging the variables Y0 and Y1, then

ι(J2) =
C011C311

C202C120
= I−1

1 J2
−1 I−1

4 I−1
6

ι(J3) =
C320C011

C211C120
= I−1

1 J3
−1 I5 I−1

6

It is standard to check that the action of Z/2Z on C∗6 given by

ι(x1, x2, x3, x4, x5, x6) = (x1, x−1
1 x−1

2 x−1
4 x−1

6 , x−1
1 x−1

3 x5x−1
6 , x4, x5, x6)

is uniquely determined by the invariants

(x1, x2 + x−1
1 x−1

2 x−1
4 x−1

6 , x3 + x−1
1 x−1

3 x5x−1
6 , x4, x5, x6)

It follows that the invariants of the action of H are

(I1, I2, I3, I4, I5, I6)

=(
C120C102
C211C011

, C011C311
C220C102

+ C011C311
C202C120

, C302C011
C211C102

+ C320C011
C211C120

, C220C202
C2

211
, C320C302

C2
311

, C3
211

C2
311C011

)
which gives a birational correspondence between K3,2 and C6.
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[Bea] A. Beauville, Variétes Kähleriennes dont la première classe de Chern
est nulle, J. Differential geometry 18 (1983), pp. 755-782.

[BB] W. L. Baily, A. Borel, Compactifications of arithmetic quotients of
bounded symmetric domains, Ann. of Math. 84, 442-528, 1966.

[BD] A. Beauville, R. Donagi. La variéteé des droites d’une hypersurface
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